skip to main content

Title: Asynchronous Local Construction of Bounded-Degree Network Topologies Using Only Neighborhood Information
We consider the ad-hoc networks consisting of n wireless nodes that are located on the plane. Any two given nodes are called neighbors if they are located within a certain distance (communication range) from one another. A given node can be directly connected to any one of its neighbors, and picks its connections according to a unique topology control algorithm that is available at every node. Given that each node knows only the indices (unique identification numbers) of its one and two-hop neighbors, we identify an algorithm that preserves connectivity and can operate without the need of any synchronization among nodes. Moreover, the algorithm results in a sparse graph with at most 5n edges and a maximum node degree of 10. Existing algorithms with the same promises further require neighbor distance and/or direction information at each node. We also evaluate the performance of our algorithm for random networks. In this case, our algorithm provides an asymptotically connected network with n(1+o(1)) edges with a degree less than or equal to 6 for 1-o(1) fraction of the nodes. We also introduce another asynchronous connectivity-preserving algorithm that can provide an upper bound as well as a lower bound on node degrees.
Award ID(s):
Publication Date:
Journal Name:
IEEE transactions on communications
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper focuses on showing time-message trade-offs in distributed algorithms for fundamental problems such as leader election, broadcast, spanning tree (ST), minimum spanning tree (MST), minimum cut, and many graph verification problems. We consider the synchronous CONGEST distributed computing model and assume that each node has initial knowledge of itself and the identifiers of its neighbors - the so-called KT_1 model - a well-studied model that also naturally arises in many applications. Recently, it has been established that one can obtain (almost) singularly optimal algorithms, i.e., algorithms that have simultaneously optimal time and message complexity (up to polylogarithmic factors), formore »many fundamental problems in the standard KT_0 model (where nodes have only local knowledge of themselves and not their neighbors). The situation is less clear in the KT_1 model. In this paper, we present several new distributed algorithms in the KT_1 model that trade off between time and message complexity. Our distributed algorithms are based on a uniform and general approach which involves constructing a sparsified spanning subgraph of the original graph - called a danner - that trades off the number of edges with the diameter of the sparsifier. In particular, a key ingredient of our approach is a distributed randomized algorithm that, given a graph G and any delta in [0,1], with high probability constructs a danner that has diameter O~(D + n^{1-delta}) and O~(min{m,n^{1+delta}}) edges in O~(n^{1-delta}) rounds while using O~(min{m,n^{1+delta}}) messages, where n, m, and D are the number of nodes, edges, and the diameter of G, respectively. Using our danner construction, we present a family of distributed randomized algorithms for various fundamental problems that exhibit a trade-off between message and time complexity and that improve over previous results. Specifically, we show the following results (all hold with high probability) in the KT_1 model, which subsume and improve over prior bounds in the KT_1 model (King et al., PODC 2014 and Awerbuch et al., JACM 1990) and the KT_0 model (Kutten et al., JACM 2015, Pandurangan et al., STOC 2017 and Elkin, PODC 2017): 1) Leader Election, Broadcast, and ST. These problems can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,1]. 2) MST and Connectivity. These problems can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,0.5]. In particular, for delta = 0.5 we obtain a distributed MST algorithm that runs in optimal O~(D+sqrt{n}) rounds and uses O~(min{m,n^{3/2}}) messages. We note that this improves over the singularly optimal algorithm in the KT_0 model that uses O~(D+sqrt{n}) rounds and O~(m) messages. 3) Minimum Cut. O(log n)-approximate minimum cut can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,0.5]. 4) Graph Verification Problems such as Bipartiteness, Spanning Subgraph etc. These can be solved in O~(D+n^{1-delta}) rounds using O~(min{m,n^{1+delta}}) messages for any delta in [0,0.5].« less
  2. We study the communication cost (or message complexity) of fundamental distributed symmetry breaking problems, namely, coloring and MIS. While significant progress has been made in understanding and improving the running time of such problems, much less is known about the message complexity of these problems. In fact, all known algorithms need at least Ω(m) communication for these problems, where m is the number of edges in the graph. We addressthe following question in this paper: can we solve problems such as coloring and MIS using sublinear, i.e., o(m) communication, and if sounder what conditions? In a classical result, Awerbuch, Goldreich,more »Peleg, and Vainish [JACM 1990] showed that fundamental global problems such asbroadcast and spanning tree construction require at least o(m) messages in the KT-1 Congest model (i.e., Congest model in which nodes have initial knowledge of the neighbors' ID's) when algorithms are restricted to be comparison-based (i.e., algorithms inwhich node ID's can only be compared). Thirty five years after this result, King, Kutten, and Thorup [PODC 2015] showed that onecan solve the above problems using Õ(n) messages (n is the number of nodes in the graph) in Õ(n) rounds in the KT-1 Congest model if non-comparison-based algorithms are permitted. An important implication of this result is that one can use the synchronous nature of the KT-1 Congest model, using silence to convey information,and solve any graph problem using non-comparison-based algorithms with Õ(n) messages, but this takes an exponential number of rounds. In the asynchronous model, even this is not possible. In contrast, much less is known about the message complexity of local symmetry breaking problems such as coloring and MIS. Our paper fills this gap by presenting the following results. Lower bounds: In the KT-1 CONGEST model, we show that any comparison-based algorithm, even a randomized Monte Carlo algorithm with constant success probability, requires Ω(n 2) messages in the worst case to solve either (△ + 1)-coloring or MIS, regardless of the number of rounds. We also show that Ω(n) is a lower bound on the number ofmessages for any (△ + 1)-coloring or MIS algorithm, even non-comparison-based, and even with nodes having initial knowledge of up to a constant radius. Upper bounds: In the KT-1 CONGEST model, we present the following randomized non-comparison-based algorithms for coloring that, with high probability, use o(m) messages and run in polynomially many rounds.(a) A (△ + 1)-coloring algorithm that uses Õ(n1.5) messages, while running in Õ(D + √ n) rounds, where D is the graph diameter. Our result also implies an asynchronous algorithm for (△ + 1)-coloring with the same message bound but running in Õ(n) rounds. (b) For any constantε > 0, a (1+ε)△-coloring algorithm that uses Õ(n/ε 2 ) messages, while running in Õ(n) rounds. If we increase our input knowledge slightly to radius 2, i.e.,in the KT-2 CONGEST model, we obtain:(c) A randomized comparison-based MIS algorithm that uses Õ(n 1.5) messages. while running in Õ( √n) rounds. While our lower bound results can be viewed as counterparts to the classical result of Awerbuch, Goldreich, Peleg, and Vainish [JACM 90], but for local problems, our algorithms are the first-known algorithms for coloring and MIS that take o(m) messages and run in polynomially many rounds.« less
  3. We consider the problem of collective exploration of a known n- node edge-weighted graph by k mobile agents that have limited energy but are capable of energy transfers. The agents are initially placed at an arbitrary subset of nodes in the graph, and each agent has an initial, possibly different, amount of energy. The goal of the exploration problem is for every edge in the graph to be traversed by at least one agent. The amount of energy used by an agent to travel distance x is proportional to x. In our model, the agents can share energy when co-located:more »when two agents meet, one can transfer part of its energy to the other. For an n-node path, we give an O(n+k) time algorithm that either nds an exploration strategy, or reports that one does not exist. For an n-node tree with l leaves, we give an O(n+lk^2) algorithm that finds an exploration strategy if one exists. Finally, for the general graph case, we show that the problem of deciding if exploration is possible by energy-sharing agents is NP-hard, even for 3-regular graphs. In addition, we show that it is always possible to find an exploration strategy if the total energy of the agents is at least twice the total weight of the edges; moreover, this is asymptotically optimal.« less
  4. Learning network topology from partial knowledge of its connectivity is an important objective in practical scenarios of communication networks and social-media networks. Representing such networks as connected graphs, exploring and recovering connectivity information between network nodes can help visualize the network topology and improve network utility. This work considers the use of simple hop distance measurement obtained from a fraction of anchor/source nodes to reconstruct the node connectivity relationship for large scale networks of unknown connection topology. Our proposed approach consists of two steps. We first develop a tree-based search strategy to determine constraints on unknown network edges based onmore »the hop count measurements. We then derive the logical distance between nodes based on principal component analysis (PCA) of the measurement matrix and propose a binary hypothesis test for each unknown edge. The proposed algorithm can effectively improve both the accuracy of connectivity detection and the successful delivery rate in data routing applications.« less
  5. Jurdziński, T ; Schmid, S (Ed.)
    In the multiparty equality problem, each of the n nodes starts with a k-bit input. If there is a mismatch between the inputs, then at least one node must be able to detect it. The cost of a multiparty equality protocol is the total number of bits sent in the protocol. We consider the problem of minimizing this communication cost under the local broadcast model for the case where the underlying communication graph is undirected. In the local broadcast model of communication, a message sent by a node is received identically by all of its neighbors. This is in contrastmore »to the classical point-to-point communication model, where a message sent by a node to one of its neighbors is received only by its intended recipient. Under point-to-point communication, there exists a simple protocol which is competitive within a factor 2 of the lower bound [1]. In this protocol, a rooted spanning tree is fixed and each node sends its entire input to its parent in the tree. On receiving a value from its child, a node compares it against its own input to check if the two values match. Ignoring lower order additive terms, a more complicated protocol comes within a factor 4/3 of the lower bound and is tight for certain classes of graphs [1]. Tight results, ignoring lower order terms, are also known for complete graphs [2, 9]. We study the multiparty equality problem under the local broadcast model. Recently, our work has shown that the connectivity requirements for Byzantine consensus are lower in the local broadcast model as compared to the classical model [7, 8]. In this work, 1. we identify a lower bound for the multiparty equality problem in this model. 2. we first identify simple protocols, wherein nodes are restricted to either transmit their entire input or not transmit anything at all, and find that these can cost Ω(logn) times the lower bound using existing example for the set cover problem [12]. 3. we then design a protocol to solve the problem within a constant factor of the lower bound.« less