skip to main content


Title: Explaining AI Decisions Using Efficient Methods for Learning Sparse Boolean Formulae
In this paper, we consider the problem of learning Boolean formulae from examples obtained by actively querying an oracle that can label these examples as either positive or negative. This problem has received attention in both machine learning as well as formal methods communities, and it has been shown to have exponential worst-case complexity in the general case as well as for many restrictions. In this paper, we focus on learning sparse Boolean formulae which depend on only a small (but unknown) subset of the overall vocabulary of atomic propositions. We propose two algorithms—first, based on binary search in the Hamming space, and the second, based on random walk on the Boolean hypercube, to learn these sparse Boolean formulae with a given confidence. This assumption of sparsity is motivated by the problem of mining explanations for decisions made by artificially intelligent (AI) algorithms, where the explanation of individual decisions may depend on a small but unknown subset of all the inputs to the algorithm. We demonstrate the use of these algorithms in automatically generating explanations of these decisions. These explanations will make intelligent systems more understandable and accountable to human users, facilitate easier audits and provide diagnostic information in the case of failure. The proposed approach treats the AI algorithm as a black-box oracle; hence, it is broadly applicable and agnostic to the specific AI algorithm. We show that the number of examples needed for both proposed algorithms only grows logarithmically with the size of the vocabulary of atomic propositions. We illustrate the practical effectiveness of our approach on a diverse set of case studies.  more » « less
Award ID(s):
1740079 1750009
NSF-PAR ID:
10119085
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Automated Reasoning
ISSN:
0168-7433
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Interpretations of logical formulas over semirings (other than the Boolean semiring) have applications in various areas of computer science including logic, AI, databases, and security. Such interpretations provide richer information beyond the truth or falsity of a statement. Examples of such semirings include Viterbi semiring, min-max or access control semiring, tropical semiring, and fuzzy semiring. The present work investigates the complexity of constraint optimization problems over semirings. The generic optimization problem we study is the following: Given a propositional formula phi over n variable and a semiring (K,+, . ,0,1), find the maximum value over all possible interpretations of phi over K. This can be seen as a generalization of the well-known satisfiability problem (a propositional formula is satisfiable if and only if the maximum value over all interpretations/assignments over the Boolean semiring is 1). A related problem is to find an interpretation that achieves the maximum value. In this work, we first focus on these optimization problems over the Viterbi semiring, which we call optConfVal and optConf. We first show that for general propositional formulas in negation normal form, optConfVal and optConf are in FP^NP. We then investigate optConf when the input formula phi is represented in the conjunctive normal form. For CNF formulae, we first derive an upper bound on the value of optConf as a function of the number of maximum satisfiable clauses. In particular, we show that if r is the maximum number of satisfiable clauses in a CNF formula with m clauses, then its optConf value is at most 1/4^(m-r). Building on this we establish that optConf for CNF formulae is hard for the complexity class FP^NP[log]. We also design polynomial-time approximation algorithms and establish an inapproximability for optConfVal. We establish similar complexity results for these optimization problems over other semirings including tropical, fuzzy, and access control semirings. 
    more » « less
  2. Williams Brian ; Chen Yiling ; Neville Jennifer (Ed.)
    Interpretations of logical formulas over semirings (other than the Boolean semiring) have applications in various areas of computer science including logic, AI, databases, and security. Such interpretations provide richer information beyond the truth or falsity of a statement. Examples of such semirings include Viterbi semiring, min-max or access control semiring, tropical semiring, and fuzzy semiring. The present work investigates the complexity of constraint optimization problems over semirings. The generic optimization problem we study is the following: Given a propositional formula $\varphi$ over $n$ variable and a semiring $(K,+,\cdot,0,1)$, find the maximum value over all possible interpretations of $\varphi$ over $K$. This can be seen as a generalization of the well-known satisfiability problem (a propositional formula is satisfiable if and only if the maximum value over all interpretations/assignments over the Boolean semiring is 1). A related problem is to find an interpretation that achieves the maximum value. In this work, we first focus on these optimization problems over the Viterbi semiring, which we call \optrustval\ and \optrust. We first show that for general propositional formulas in negation normal form, \optrustval\ and {\optrust} are in ${\mathrm{FP}}^{\mathrm{NP}}$. We then investigate {\optrust} when the input formula $\varphi$ is represented in the conjunctive normal form. For CNF formulae, we first derive an upper bound on the value of {\optrust} as a function of the number of maximum satisfiable clauses. In particular, we show that if $r$ is the maximum number of satisfiable clauses in a CNF formula with $m$ clauses, then its $\optrust$ value is at most $1/4^{m-r}$. Building on this we establish that {\optrust} for CNF formulae is hard for the complexity class ${\mathrm{FP}}^{\mathrm{NP}[\log]}$. We also design polynomial-time approximation algorithms and establish an inapproximability for {\optrustval}. We establish similar complexity results for these optimization problems over other semirings including tropical, fuzzy, and access control semirings. 
    more » « less
  3. Pe'er, I. (Ed.)
    Combinatorial group testing and compressed sensing both focus on recovering a sparse vector of dimensionality n from a much smaller number 𝑚<𝑛 of measurements. In the first approach, the problem is defined over the Boolean field – the goal is to recover a Boolean vector and measurements are Boolean; in the second approach, the unknown vector and the measurements are over the reals. Here, we focus on real-valued group testing setting that more closely fits modern testing protocols relying on quantitative measurements, such as qPCR, where the goal is recovery of a sparse, Boolean vector and the pooling matrix needs to be Boolean and sparse, but the unknown input signal vector and the measurement outcomes are nonnegative reals, and the matrix algebra implied in the test protocol is over the reals. With the recent renewed interest in group testing, focus has been on quantitative measurements resulting from qPCR, but the method proposed for sample pooling were based on matrices designed with Boolean measurements in mind. Here, we investigate constructing pooling matrices dedicated for the real-valued group testing. We provide conditions for pooling matrices to guarantee unambiguous decoding of positives in this setting. We also show a deterministic algorithm for constructing matrices meeting the proposed condition, for small matrix sizes that can be implemented using a laboratory robot. Using simulated data, we show that the proposed approach leads to matrices that can be applied for higher positivity rates than combinatorial group testing matrices considered for viral testing previously. We also validate the approach through wet lab experiments involving SARS-CoV-2 nasopharyngeal swab samples. 
    more » « less
  4. We give the first agnostic, efficient, proper learning algorithm for monotone Boolean functions. Given 2O~(n√/ε) uniformly random examples of an unknown function f:{±1}n→{±1}, our algorithm outputs a hypothesis g:{±1}n→{±1} that is monotone and (opt +ε)-close to f, where opt is the distance from f to the closest monotone function. The running time of the algorithm (and consequently the size and evaluation time of the hypothesis) is also 2O~(n√/ε), nearly matching the lower bound of [13]. We also give an algorithm for estimating up to additive error ε the distance of an unknown function f to monotone using a run-time of 2O~(n√/ε). Previously, for both of these problems, sample-efficient algorithms were known, but these algorithms were not run-time efficient. Our work thus closes this gap in our knowledge between the run-time and sample complexity.This work builds upon the improper learning algorithm of [17] and the proper semiagnostic learning algorithm of [40], which obtains a non-monotone Boolean-valued hypothesis, then “corrects” it to monotone using query-efficient local computation algorithms on graphs. This black-box correction approach can achieve no error better than 2 opt +ε information-theoretically; we bypass this barrier bya)augmenting the improper learner with a convex optimization step, andb)learning and correcting a real-valued function before rounding its values to Boolean. Our real-valued correction algorithm solves the “poset sorting” problem of [40] for functions over general posets with non-Boolean labels. 
    more » « less
  5. Low-rank matrix recovery is a fundamental problem in machine learning with numerous applications. In practice, the problem can be solved by convex optimization namely nuclear norm minimization, or by non-convex optimization as it is well-known that for low-rank matrix problems like matrix sensing and matrix completion, all local optima of the natural non-convex objectives are also globally optimal under certain ideal assumptions. In this paper, we study new approaches for matrix sensing in a semi-random model where an adversary can add any number of arbitrary sensing matrices. More precisely, the problem is to recover a low-rank matrix $X^\star$ from linear measurements $b_i = \langle A_i, X^\star \rangle$, where an unknown subset of the sensing matrices satisfies the Restricted Isometry Property (RIP) and the rest of the $A_i$'s are chosen adversarially. It is known that in the semi-random model, existing non-convex objectives can have bad local optima. To fix this, we present a descent-style algorithm that provably recovers the ground-truth matrix $X^\star$. For the closely-related problem of semi-random matrix completion, prior work [CG18] showed that all bad local optima can be eliminated by reweighting the input data. However, the analogous approach for matrix sensing requires reweighting a set of matrices to satisfy RIP, which is a condition that is NP-hard to check. Instead, we build on the framework proposed in [KLL$^+$23] for semi-random sparse linear regression, where the algorithm in each iteration reweights the input based on the current solution, and then takes a weighted gradient step that is guaranteed to work well locally. Our analysis crucially exploits the connection between sparsity in vector problems and low-rankness in matrix problems, which may have other applications in obtaining robust algorithms for sparse and low-rank problems. 
    more » « less