Learning optimal policies in real-world domains with delayed rewards is a major challenge in Reinforcement Learning. We address the credit assignment problem by proposing a Gaussian Process (GP)-based immediate reward approximation algorithm and evaluate its effectiveness in 4 contexts where rewards can be delayed for long trajectories. In one GridWorld game and 8 Atari games, where immediate rewards are available, our results showed that on 7 out 9 games, the proposed GP inferred reward policy performed at least as well as the immediate reward policy and significantly outperformed the corresponding delayed reward policy. In e-learning and healthcare applications, we combined GP-inferred immediate rewards with offline Deep Q-Network (DQN) policy induction and showed that the GP-inferred reward policies outperformed the policies induced using delayed rewards in both real-world contexts.
more »
« less
Data Efficient Learning of Robust Control Policies
This paper investigates data-efficient methods for learning robust control policies. Reinforcement learning has emerged as an effective approach to learn control policies by interacting directly with the plant, but it requires a significant number of example trajectories to converge to the optimal policy. Combining model-free reinforcement learning with model-based control methods achieves better data-efficiency via simultaneous system identification and controller synthesis. We study a novel approach that exploits the existence of approximate physics models to accelerate the learning of control policies. The proposed approach consists of iterating through three key steps: evaluating a selected policy on the real-world plant and recording trajectories, building a Gaussian process model to predict the reality-gap of a parametric physics model in the neighborhood of the selected policy, and synthesizing a new policy using reinforcement learning on the refined physics model that most likely approximates the real plant. The approach converges to an optimal policy as well as an approximate physics model. The real world experiments are limited to evaluating only promising candidate policies, and the use of Gaussian processes minimizes the number of required real world trajectories. We demonstrate the effectiveness of our techniques on a set of simulation case-studies using OpenAI gym environments.
more »
« less
- PAR ID:
- 10119086
- Date Published:
- Journal Name:
- 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
- Page Range / eLocation ID:
- 856 to 861
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents a practical approach for identifying unknown mechanical parameters, such as mass and friction models of manipulated rigid objects or actuated robotic links, in a succinct manner that aims to improve the performance of policy search algorithms. Key features of this approach are the use of off-the-shelf physics engines and the adaptation of a black-box Bayesian optimization framework for this purpose. The physics engine is used to reproduce in simulation experiments that are performed on a real robot, and the mechanical parameters of the simulated system are automatically fine-tuned so that the simulated trajectories match with the real ones. The optimized model is then used for learning a policy in simulation, before safely deploying it on the real robot. Given the well-known limitations of physics engines in modeling real-world objects, it is generally not possible to find a mechanical model that reproduces in simulation the real trajectories exactly. Moreover, there are many scenarios where a near-optimal policy can be found without having a perfect knowledge of the system. Therefore, searching for a perfect model may not be worth the computational effort in practice. The proposed approach aims then to identify a model that is good enough to approximate the value of a locally optimal policy with a certain confidence, instead of spending all the computational resources on searching for the most accurate model. Empirical evaluations, performed in simulation and on a real robotic manipulation task, show that model identification via physics engines can significantly boost the performance of policy search algorithms that are popular in robotics, such as TRPO, PoWER and PILCO, with no additional real-world data.more » « less
-
The objective of this research is to enable safety‐critical systems to simultaneously learn and execute optimal control policies in a safe manner to achieve complex autonomy. Learning optimal policies via trial and error, that is, traditional reinforcement learning, is difficult to implement in safety‐critical systems, particularly when task restarts are unavailable. Safe model‐based reinforcement learning techniques based on a barrier transformation have recently been developed to address this problem. However, these methods rely on full‐state feedback, limiting their usability in a real‐world environment. In this work, an output‐feedback safe model‐based reinforcement learning technique based on a novel barrier‐aware dynamic state estimator has been designed to address this issue. The developed approach facilitates simultaneous learning and execution of safe control policies for safety‐critical linear systems. Simulation results indicate that barrier transformation is an effective approach to achieve online reinforcement learning in safety‐critical systems using output feedback.more » « less
-
Learning a dynamical system requires stabilizing the unknown dynamics to avoid state blow-ups. However, the standard reinforcement learning (RL) methods lack formal stabilization guarantees, which limits their applicability for the control of real-world dynamical systems. We propose a novel policy optimization method that adopts Krasovskii's family of Lyapunov functions as a stability constraint. We show that solving this stability-constrained optimization problem using a primal-dual approach recovers a stabilizing policy for the underlying system even under modeling error. Combining this method with model learning, we propose a model-based RL framework with formal stability guarantees, Krasovskii-Constrained Reinforcement Learning (KCRL). We theoretically study KCRL with kernel-based feature representation in model learning and provide a sample complexity guarantee to learn a stabilizing controller for the underlying system. Further, we empirically demonstrate the effectiveness of KCRL in learning stabilizing policies in online voltage control of a distributed power system. We show that KCRL stabilizes the system under various real-world solar and electricity demand profiles, whereas standard RL methods often fail to stabilize.more » « less
-
Detection of malicious behavior is a fundamental problem in security. One of the major challenges in using detection systems in practice is in dealing with an overwhelming number of alerts that are triggered by normal behavior (the so-called false positives), obscuring alerts resulting from actual malicious activity. While numerous methods for reducing the scope of this issue have been proposed, ultimately one must still decide how to prioritize which alerts to investigate, and most existing prioritization methods are heuristic, for example, based on suspiciousness or priority scores. We introduce a novel approach for computing a policy for prioritizing alerts using adversarial reinforcement learning. Our approach assumes that the attackers know the full state of the detection system and dynamically choose an optimal attack as a function of this state, as well as of the alert prioritization policy. The first step of our approach is to capture the interaction between the defender and attacker in a game theoretic model. To tackle the computational complexity of solving this game to obtain a dynamic stochastic alert prioritization policy, we propose an adversarial reinforcement learning framework. In this framework, we use neural reinforcement learning to compute best response policies for both the defender and the adversary to an arbitrary stochastic policy of the other. We then use these in a double-oracle framework to obtain an approximate equilibrium of the game, which in turn yields a robust stochastic policy for the defender. Extensive experiments using case studies in fraud and intrusion detection demonstrate that our approach is effective in creating robust alert prioritization policies.more » « less
An official website of the United States government

