skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simultaneous Bi-directional Communications and Data Forwarding using a Single ZigBee Data Stream
With the exponentially increasing number of Inter- net of Things (IoT) devices and the huge volume of data generated by these devices, there is a pressing need to investigate a more efficient communication method in both frequency and time domains at the edge of the IoT networks. In this paper, we present Amphista, a novel cross-layer design for IoT communication and data forwarding that can more efficiently utilize the ever increas- ingly crowded 2.4 GHz spectrum near the gateway. Specifically, by using a single ZigBee data stream, Amphista enables a ZigBee device to send out two different pieces of information to both the WiFi gateway and another ZigBee device. We further leverage this unique feature and design a novel forwarding protocol that can simultaneously forward uplink (e.g., collecting sensing data) and downlink (e.g., disseminating software updates) data by using a single ZigBee data stream. Our extensive experimental results show that Amphista significantly improves throughput (by up to 400x) and reduces the latency.  more » « less
Award ID(s):
1824491
PAR ID:
10119095
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications
Page Range / eLocation ID:
577 to 585
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Widely deployed IoT devices have raised serious concerns for the spectrum shortage and the cost of multi-protocol gateway deployment. Recent emerging Cross-Technology Communication (CTC) technique can alleviate this issue by enabling direct communication among heterogeneous wireless devices, such as WiFi, Bluetooth, and ZigBee on 2.4 GHz. However, this new paradigm also brings security risks, where an attacker can use CTC to launch wireless attacks against IoT devices. Due to limited computational capability and different wireless protocols being used, many IoT devices are unable to use computationally-intensive cryptographic approaches for security enhancement. Therefore, without proper detection methods, IoT devices cannot distinguish signal sources before executing command signals. In this paper, we first demonstrate a new defined physical layer attack in the CTC scenario, named as waveform emulation attack, where a WiFi device can overhear and emulate the ZigBee waveform to attack ZigBee IoT devices. Then, to defend against this new attack, we propose a physical layer defensive mechanism, named as AuthCTC, to verify the legitimacy of CTC signals. Specifically, at the sender side, an authorization code is embedded into the packet preamble by leveraging the dynamically changed cyclic prefix. A WiFi-based detector is used to verify the authorization code at the receiver side. Extensive simulations and experiments using off-the-shelf devices are conducted to demonstrate both the feasibility of the attack and the effectiveness of our defensive mechanism. 
    more » « less
  2. Green wireless networks Wake-up radio Energy harvesting Routing Markov decision process Reinforcement learning 1. Introduction With 14.2 billions of connected things in 2019, over 41.6 billions expected by 2025, and a total spending on endpoints and services that will reach well over $1.1 trillion by the end of 2026, the Internet of Things (IoT) is poised to have a transformative impact on the way we live and on the way we work [1–3]. The vision of this ‘‘connected continuum’’ of objects and people, however, comes with a wide variety of challenges, especially for those IoT networks whose devices rely on some forms of depletable energy support. This has prompted research on hardware and software solutions aimed at decreasing the depen- dence of devices from ‘‘pre-packaged’’ energy provision (e.g., batteries), leading to devices capable of harvesting energy from the environment, and to networks – often called green wireless networks – whose lifetime is virtually infinite. Despite the promising advances of energy harvesting technologies, IoT devices are still doomed to run out of energy due to their inherent constraints on resources such as storage, processing and communica- tion, whose energy requirements often exceed what harvesting can provide. The communication circuitry of prevailing radio technology, especially, consumes relevant amount of energy even when in idle state, i.e., even when no transmissions or receptions occur. Even duty cycling, namely, operating with the radio in low energy consumption ∗ Corresponding author. E-mail address: koutsandria@di.uniroma1.it (G. Koutsandria). https://doi.org/10.1016/j.comcom.2020.05.046 (sleep) mode for pre-set amounts of time, has been shown to only mildly alleviate the problem of making IoT devices durable [4]. An effective answer to eliminate all possible forms of energy consumption that are not directly related to communication (e.g., idle listening) is provided by ultra low power radio triggering techniques, also known as wake-up radios [5,6]. Wake-up radio-based networks allow devices to remain in sleep mode by turning off their main radio when no communication is taking place. Devices continuously listen for a trigger on their wake-up radio, namely, for a wake-up sequence, to activate their main radio and participate to communication tasks. Therefore, devices wake up and turn their main radio on only when data communication is requested by a neighboring device. Further energy savings can be obtained by restricting the number of neighboring devices that wake up when triggered. This is obtained by allowing devices to wake up only when they receive specific wake-up sequences, which correspond to particular protocol requirements, including distance from the destina- tion, current energy status, residual energy, etc. This form of selective awakenings is called semantic addressing [7]. Use of low-power wake-up radio with semantic addressing has been shown to remarkably reduce the dominating energy costs of communication and idle listening of traditional radio networking [7–12]. This paper contributes to the research on enabling green wireless networks for long lasting IoT applications. Specifically, we introduce a ABSTRACT This paper presents G-WHARP, for Green Wake-up and HARvesting-based energy-Predictive forwarding, a wake-up radio-based forwarding strategy for wireless networks equipped with energy harvesting capabilities (green wireless networks). Following a learning-based approach, G-WHARP blends energy harvesting and wake-up radio technology to maximize energy efficiency and obtain superior network performance. Nodes autonomously decide on their forwarding availability based on a Markov Decision Process (MDP) that takes into account a variety of energy-related aspects, including the currently available energy and that harvestable in the foreseeable future. Solution of the MDP is provided by a computationally light heuristic based on a simple threshold policy, thus obtaining further computational energy savings. The performance of G-WHARP is evaluated via GreenCastalia simulations, where we accurately model wake-up radios, harvestable energy, and the computational power needed to solve the MDP. Key network and system parameters are varied, including the source of harvestable energy, the network density, wake-up radio data rate and data traffic. We also compare the performance of G-WHARP to that of two state-of-the-art data forwarding strategies, namely GreenRoutes and CTP-WUR. Results show that G-WHARP limits energy expenditures while achieving low end-to-end latency and high packet delivery ratio. Particularly, it consumes up to 34% and 59% less energy than CTP-WUR and GreenRoutes, respectively. 
    more » « less
  3. null (Ed.)
    Low-power wireless mesh networks (LPWMNs) have been widely used in wireless monitoring and control applications. Although LPWMNs work satisfactorily most of the time thanks to decades of research, they are often complex, inelastic to change, and difficult to manage once the networks are deployed. Moreover, the deliveries of control commands, especially those carrying urgent information such as emergency alarms, suffer long delay, since the messages must go through the hop-by-hop transport. Recent studies show that adding low-power wide-area network radios such as LoRa onto the LPWMN devices (e.g., ZigBee) effectively overcomes the limitation. However, users have shown a marked reluctance to embrace the new heterogeneous communication approach because of the cost of hardware modification. In this article, we introduce LoRaBee, a novel LoRa to ZigBee cross-technology communication (CTC) approach, which leverages the energy emission in the Sub-1 GHz bands as the carrier to deliver information. Although LoRa and ZigBee adopt distinct modulation techniques, LoRaBee sends information from LoRa to ZigBee by putting specific bytes in the payload of legitimate LoRa packets. The bytes are selected such that the corresponding LoRa chirps can be recognized by the ZigBee devices through sampling the received signal strength. Experimental results show that our LoRaBee provides reliable CTC communication from LoRa to ZigBee with the throughput of up to 281.61 bps in the Sub-1 GHz bands. 
    more » « less
  4. The IoT devices are typically shipped with default insecure configurations and vulnerable software stacks rendering host networks exposed to attacks, especially small networks with no administration. We present a network system model for device configuration and operations management. Using this model, we design and implement an autonomous network management platform with device classification and traffic characterization functions integrated in a network gateway. We evaluate the system using a connected home testbed that combines IoT and general-purpose devices. 
    more » « less
  5. ZigBee is a popular wireless communication standard for Internet of Things (IoT) networks. Since each ZigBee network uses hop-by-hop network-layer message authentication based Yanchao Zhang Arizona State University Star E E Tree E E R E Mesh E E R E E E on a common network key, it is highly vulnerable to packetC E injection attacks, in which the adversary exploits the compromised network key to inject arbitrary fake packets from any spoofed address to disrupt network operations and conCoordinator C R E sume the network/device resources. In this paper, we present PhyAuth, a PHY hop-by-hop message authentication frameE E C R R E E E R R C R E E Router E E E End Device Figure 1: ZigBee network topologies. work to defend against packet-injection attacks in ZigBee networks. The key idea of PhyAuth is to let each ZigBee E The coordinator acts as a central node responsible for mantransmitter embed into its PHY signals a PHY one-time password (called POTP) derived from a device-specific secret key and an efficient cryptographic hash function. An authentic POTP serves as the transmitter’s PHY transmission permission for the corresponding packet. PhyAuth provides three schemes to embed, detect, and verify POTPs based on different features of ZigBee PHY signals. In addition, PhyAuth involves lightweight PHY signal processing and no change to the ZigBee protocolstack. Comprehensive USRP experiments confirm that PhyAuth can efficiently detect fake packets with very low false-positive and false-negative rates while having a negligible negative impact on normal data transmissions. 
    more » « less