Website fingerprinting attacks, which use statistical analysis on network traffic to compromise user privacy, have been shown to be effective even if the traffic is sent over anonymity-preserving networks such as Tor. The classical attack model used to evaluate website fingerprinting attacks assumes an on-path adversary, who can observe all traffic
traveling between the user’s computer and the secure network.
In this work we investigate these attacks under a different attack model, in which the adversary is capable of sending a small amount of malicious JavaScript code to the target
user’s computer. The malicious code mounts a cache side-channel attack, which exploits the effects of contention on the CPU’s cache, to identify other websites being browsed.
The effectiveness of this attack scenario has never been systematically analyzed, especially in the open-world model which assumes that the user is visiting a mix of both sensitive
and non-sensitive sites.
We show that cache website fingerprinting attacks in JavaScript are highly feasible. Specifically, we use machine learning techniques to classify traces of cache activity.
Unlike prior works, which try to identify cache conflicts, our work measures the overall occupancy of the last-level cache. We show that our approach achieves high classification
accuracy in both the open-world and the closed-world models. We further show that our attack is more resistant than network-based fingerprinting to the effects of response
caching, and that our techniques are resilient both to network-based defenses and to side-channel countermeasures introduced to modern browsers as a response to the
Spectre attack. To protect against cache-based website fingerprinting, new defense mechanisms must be introduced to privacy-sensitive browsers and websites. We investigate one such mechanism, and show that generating artificial cache activity reduces the effectiveness of the attack and completely eliminates it when used in the Tor Browser
more »
« less
At Home and Abroad: The Use of Denial-of-service Attacks during Elections in Nondemocratic Regimes
In this article, we study the political use of denial-of-service (DoS) attacks, a particular form of cyberattack that disables web services by flooding them with high levels of data traffic. We argue that websites in nondemocratic regimes should be especially prone to this type of attack, particularly around political focal points such as elections. This is due to two mechanisms: governments employ DoS attacks to censor regime-threatening information, while at the same time, activists use DoS attacks as a tool to publicly undermine the government’s authority. We analyze these mechanisms by relying on measurements of DoS attacks based on large-scale Internet traffic data. Our results show that in authoritarian countries, elections indeed increase the number of DoS attacks. However, these attacks do not seem to be directed primarily against the country itself but rather against other states that serve as hosts for news websites from this country.
more »
« less
- Award ID(s):
- 1730661
- PAR ID:
- 10119133
- Date Published:
- Journal Name:
- Journal of Conflict Resolution
- ISSN:
- 0022-0027
- Page Range / eLocation ID:
- 002200271986167
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
State-of-the-art System-on-Chip (SoC) designs consist of many Intellectual Property (IP) cores that interact using a Network-on-Chip (NoC) architecture. SoC designers increasingly rely on global supply chains for obtaining third-party IPs. In addition to inherent vulnerabilities associated with utilizing third-party IPs, NoC based SoCs enable attackers to exploit the distributed nature of NoC and its connectivity with various IPs to launch a plethora of attacks. Specifically, Denial-of-Service (DoS) attacks pose a serious threat in degrading the SoC performance by flooding the NoC with unnecessary packets. In this paper, we present a machine learning-based runtime monitoring mechanism to detect DoS attacks. The models are statically trained and used for runtime attack detection leading to minimum runtime performance overhead. Our approach is capable of detecting DoS attacks with high accuracy, even in the presence of unpredictable NoC traffic patterns caused by various application mappings. We extensively explore machine learning models and features to provide a comprehensive study on how to use machine learning for DoS attack detection in NoC-based SoCs.more » « less
-
Text passwords remain a primary means for user authentication on modern computer systems. However, recent studies have shown the promises of guessing user passwords efficiently with auxiliary information of the targeted accounts, such as the users' personal information, previously used passwords, or those used in other systems. Authentication rate-limiting mechanisms, such as account lockout and login throttling, are common methods to defeat online password cracking attacks. But to date, no published studies have investigated how authentication rate-limiting is implemented by popular websites. In this paper, we present a measurement study of such countermeasures against online password cracking. Towards this end, we propose a black-box approach to modeling and validating the websites' implementation of the rate-limiting mechanisms. We applied the tool to examine all 182 websites that we were able to analyze in the Alexa Top 500 websites in the United States. The results are rather surprising: 131 websites (72%) allow frequent, unsuccessful login attempts without account lockout or login throttling (though some of these websites force the adversary to lower the login frequency or constantly change his IP addresses to circumvent the rate-limiting enforcement). The remaining 51 websites are not absolutely secure either: 28 websites may block a legitimate user with correct passwords when the account is locked out, effectively enabling authentication denial-of-service attacks.more » « less
-
The Unmanned aerial vehicles (UAVs) sector is fast-expanding. Protection of real-time UAV applications against malicious attacks has become an urgent problem that needs to be solved. Denial-of-service (DoS) attack aims to exhaust system resources and cause important tasks to miss deadlines. DoS attack may be one of the common problems of UAV systems, due to its simple implementation. In this paper, we present a software framework that offers DoS attack-resilient control for real-time UAV systems using containers: Container Drone. The framework provides defense mechanisms for three critical system resources: CPU, memory, and communication channel. We restrict the attacker's access to the CPU core set and utilization. Memory bandwidth throttling limits the attacker's memory usage. By simulating sensors and drivers in the container, a security monitor constantly checks DoS attacks over communication channels. Upon the detection of a security rule violation, the framework switches to the safety controller to mitigate the attack. We implemented a prototype quadcopter with commercially off-the-shelf (COTS) hardware and open-source software. Our experimental results demonstrated the effectiveness of the proposed framework defending against various DoS attacks.more » « less
-
Tor provides low-latency anonymous and uncensored network access against a local or network adversary. Due to the design choice to minimize traffic overhead (and increase the pool of potential users) Tor allows some information about the client's connections to leak. Attacks using (features extracted from) this information to infer the website a user visits are called Website Fingerprinting (WF) attacks. We develop a methodology and tools to measure the amount of leaked information about a website. We apply this tool to a comprehensive set of features extracted from a large set of websites and WF defense mechanisms, allowing us to make more fine-grained observations about WF attacks and defenses.more » « less