Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Internet has never been more important to our society, and understanding the behavior of the Internet is essential. The Center for Applied Internet Data Analysis (CAIDA) Telescope observes a continuous stream of packets from an unsolicited darkspace representing 1/256 of the Internet. During 2019 and 2020 over 40,000,000,000,000 unique packets were collected representing the largest ever assembled public corpus of Internet traffic. Using the combined resources of the Supercomputing Centers at UC San Diego, Lawrence Berkeley National Laboratory, and MIT, the spatial temporal structure of anonymized source-destination pairs from the CAIDA Telescope data has been analyzed with GraphBLAS hierarchical hyper-sparse matrices. These analyses provide unique insight on this unsolicited Internet darkspace traffic with the discovery of many previously unseen scaling relations. The data show a significant sustained increase in unsolicited traffic corresponding to the start of the COVID19 pandemic, but relatively little change in the underlying scaling relations associated with unique sources, source fan-outs, unique links, destination fan-ins, and unique destinations. This work provides a demonstration of the practical feasibility and benefit of the safe collection and analysis of significant quantities of anonymized Internet traffic.more » « less
-
The Internet is transforming our society, necessitating a quantitative understanding of Internet traffic. Our team collects and curates the largest publicly available Internet traffic data containing 50 billion packets. Utilizing a novel hypersparse neural network analysis of “video” streams of this traffic using 10,000 processors in the MIT SuperCloud reveals a new phenomena: the importance of otherwise unseen leaf nodes and isolated links in Internet traffic. Our neural network approach further shows that a two-parameter modified Zipf-Mandelbrot distribution accurately describes a wide variety of source/destination statistics on moving sample windows ranging from 100,000 to 100,000,000 packets over collections that span years and continents. The inferred model parameters distinguish different network streams and the model leaf parameter strongly correlates with the fraction of the traffic in different underlying network topologies. The hypersparse neural network pipeline is highly adaptable and different network statistics and training models can be incorporated with simple changes to the image filter functions.more » « less
-
In this article, we study the political use of denial-of-service (DoS) attacks, a particular form of cyberattack that disables web services by flooding them with high levels of data traffic. We argue that websites in nondemocratic regimes should be especially prone to this type of attack, particularly around political focal points such as elections. This is due to two mechanisms: governments employ DoS attacks to censor regime-threatening information, while at the same time, activists use DoS attacks as a tool to publicly undermine the government’s authority. We analyze these mechanisms by relying on measurements of DoS attacks based on large-scale Internet traffic data. Our results show that in authoritarian countries, elections indeed increase the number of DoS attacks. However, these attacks do not seem to be directed primarily against the country itself but rather against other states that serve as hosts for news websites from this country.more » « less