skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: City-scale vehicle tracking and traffic flow estimation using low frame-rate traffic cameras
Vehicle flow estimation has many potential smart cities and transportation applications. Many cities have existing camera networks which broadcast image feeds; however, the resolution and frame-rate are too low for existing computer vision algorithms to accurately estimate flow. In this work, we present a computer vision and deep learning framework for vehicle tracking. We demonstrate a novel tracking pipeline which enables accurate flow estimates in a range of environments under low resolution and frame-rate constraints. We demonstrate that our system is able to track vehicles in New York City's traffic camera video feeds at 1 Hz or lower frame-rate, and produces higher traffic flow accuracy than popular open source tracking frameworks.  more » « less
Award ID(s):
1815274 1943396 1704899
PAR ID:
10119167
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers
Page Range / eLocation ID:
602 to 610
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The traffic congestion hits most big cities in the world - threatening long delays and serious reductions in air quality. City and local government officials continue to face challenges in optimizing crowd flow, synchronizing traffic and mitigating threats or dangerous situations. One of the major challenges faced by city planners and traffic engineers is developing a robust traffic controller that eliminates traffic congestion and imbalanced traffic flow at intersections. Ensuring that traffic moves smoothly and minimizing the waiting time in intersections requires automated vehicle detection techniques for controlling the traffic light automatically, which are still challenging problems. In this paper, we propose an intelligent traffic pattern collection and analysis model, named TPCAM, based on traffic cameras to help in smooth vehicular movement on junctions and set to reduce the traffic congestion. Our traffic detection and pattern analysis model aims at detecting and calculating the traffic flux of vehicles and pedestrians at intersections in real-time. Our system can utilize one camera to capture all the traffic flows in one intersection instead of multiple cameras, which will reduce the infrastructure requirement and potential for easy deployment. We propose a new deep learning model based on YOLOv2 and adapt the model for the traffic detection scenarios. To reduce the network burdens and eliminate the deployment of network backbone at the intersections, we propose to process the traffic video data at the network edge without transmitting the big data back to the cloud. To improve the processing frame rate at the edge, we further propose deep object tracking algorithm leveraging adaptive multi-modal models and make it robust to object occlusions and varying lighting conditions. Based on the deep learning based detection and tracking, we can achieve pseudo-30FPS via adaptive key frame selection. 
    more » « less
  2. null (Ed.)
    The Go-CHART is a four-wheel, skid-steer robot that resembles a 1:28 scale standard commercial sedan. It is equipped with an onboard sensor suite and both onboard and external computers that replicate many of the sensing and computation capabilities of a full-size autonomous vehicle. The Go-CHART can autonomously navigate a small-scale traffic testbed, responding to its sensor input wiwithth programmed controllers. Alternatively, it can be remotely driven by a user who views the testbed through the robot's four camera feeds, which facilitates safe, controlled experiments on driver interactions with driverless vehicles. We demonstrate the Go-CHART's ability to perform lane tracking and detection of traffic signs, traffic signals, and other Go-CHARTs in real-time, utilizing an external GPU that runs computationally intensive computer vision and deep learning algorithms. 
    more » « less
  3. Tracking subjects in videos is one of the most widely used functions in camera-based IoT applications such as security surveillance, smart city traffic safety enhancement, vehicle to pedestrian communication and so on. In computer vision domain, tracking is usually achieved by first detecting subjects, then associating detected bounding boxes across video frames. Typically, frames are transmitted to a remote site for processing, incurring high latency and network costs. To address this, we propose ViFiT, a transformerbased model that reconstructs vision bounding box trajectories from phone data (IMU and Fine Time Measurements). It leverages a transformer’s ability of better modeling long-term time series data. ViFiT is evaluated on Vi-Fi Dataset, a large-scale multimodal dataset in 5 diverse real world scenes, including indoor and outdoor environments. Results demonstrate that ViFiT outperforms the state-of-the-art approach for cross-modal reconstruction in LSTM Encoder-Decoder architecture X-Translator and achieves a high frame reduction rate as 97.76% with IMU and Wi-Fi data. 
    more » « less
  4. Camera-based systems are increasingly used for collecting information on intersections and arterials. Unlike loop controllers that can generally be only used for detection and movement of vehicles, cameras can provide rich information about the traffic behavior. Vision-based frameworks for multiple-object detection, object tracking, and near-miss detection have been developed to derive this information. However, much of this work currently addresses processing videos offline. In this article, we propose an integrated two-stream convolutional networks architecture that performs real-time detection, tracking, and near-accident detection of road users in traffic video data. The two-stream model consists of a spatial stream network for object detection and a temporal stream network to leverage motion features for multiple-object tracking. We detect near-accidents by incorporating appearance features and motion features from these two networks. Further, we demonstrate that our approaches can be executed in real-time and at a frame rate that is higher than the video frame rate on a variety of videos collected from fisheye and overhead cameras. 
    more » « less
  5. Modern cities have hundreds to thousands of traffic cameras distributed across them, many of them with the capa- bility to pan and tilt, but very often these pan and tilt cameras either do not have angle sensors or do not provide camera orientation feedback. This makes it difficult to robustly track traffic using these cameras. Several methods to automatically detect the camera pose have been proposed in literature, with the most popular and robust being deep learning-based approaches. However, they are compute intensive, require large amounts of training data, and generally cannot be run on embedded devices. In this paper, we propose TIPAngle – a Siamese neural network, lightweight training, and a highly optimized inference mechanism and toolset to estimate camera pose and thereby improve traffic tracking even when operators change the pose of the traffic cameras. TIPAngle is 18.45x times faster and 3x more accurate in determining the angle of a camera frame than a ResNet-18 based approach. We deploy TIPAngle to a Raspberry Pi CPU and show that processing an image takes an average of .057s, equating to a frequency of about 17Hz on an embedded device. 
    more » « less