skip to main content


Title: City-scale vehicle tracking and traffic flow estimation using low frame-rate traffic cameras
Vehicle flow estimation has many potential smart cities and transportation applications. Many cities have existing camera networks which broadcast image feeds; however, the resolution and frame-rate are too low for existing computer vision algorithms to accurately estimate flow. In this work, we present a computer vision and deep learning framework for vehicle tracking. We demonstrate a novel tracking pipeline which enables accurate flow estimates in a range of environments under low resolution and frame-rate constraints. We demonstrate that our system is able to track vehicles in New York City's traffic camera video feeds at 1 Hz or lower frame-rate, and produces higher traffic flow accuracy than popular open source tracking frameworks.  more » « less
Award ID(s):
1815274 1943396 1704899
NSF-PAR ID:
10119167
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers
Page Range / eLocation ID:
602 to 610
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The traffic congestion hits most big cities in the world - threatening long delays and serious reductions in air quality. City and local government officials continue to face challenges in optimizing crowd flow, synchronizing traffic and mitigating threats or dangerous situations. One of the major challenges faced by city planners and traffic engineers is developing a robust traffic controller that eliminates traffic congestion and imbalanced traffic flow at intersections. Ensuring that traffic moves smoothly and minimizing the waiting time in intersections requires automated vehicle detection techniques for controlling the traffic light automatically, which are still challenging problems. In this paper, we propose an intelligent traffic pattern collection and analysis model, named TPCAM, based on traffic cameras to help in smooth vehicular movement on junctions and set to reduce the traffic congestion. Our traffic detection and pattern analysis model aims at detecting and calculating the traffic flux of vehicles and pedestrians at intersections in real-time. Our system can utilize one camera to capture all the traffic flows in one intersection instead of multiple cameras, which will reduce the infrastructure requirement and potential for easy deployment. We propose a new deep learning model based on YOLOv2 and adapt the model for the traffic detection scenarios. To reduce the network burdens and eliminate the deployment of network backbone at the intersections, we propose to process the traffic video data at the network edge without transmitting the big data back to the cloud. To improve the processing frame rate at the edge, we further propose deep object tracking algorithm leveraging adaptive multi-modal models and make it robust to object occlusions and varying lighting conditions. Based on the deep learning based detection and tracking, we can achieve pseudo-30FPS via adaptive key frame selection. 
    more » « less
  2. null (Ed.)
    The Go-CHART is a four-wheel, skid-steer robot that resembles a 1:28 scale standard commercial sedan. It is equipped with an onboard sensor suite and both onboard and external computers that replicate many of the sensing and computation capabilities of a full-size autonomous vehicle. The Go-CHART can autonomously navigate a small-scale traffic testbed, responding to its sensor input wiwithth programmed controllers. Alternatively, it can be remotely driven by a user who views the testbed through the robot's four camera feeds, which facilitates safe, controlled experiments on driver interactions with driverless vehicles. We demonstrate the Go-CHART's ability to perform lane tracking and detection of traffic signs, traffic signals, and other Go-CHARTs in real-time, utilizing an external GPU that runs computationally intensive computer vision and deep learning algorithms. 
    more » « less
  3. Camera-based systems are increasingly used for collecting information on intersections and arterials. Unlike loop controllers that can generally be only used for detection and movement of vehicles, cameras can provide rich information about the traffic behavior. Vision-based frameworks for multiple-object detection, object tracking, and near-miss detection have been developed to derive this information. However, much of this work currently addresses processing videos offline. In this article, we propose an integrated two-stream convolutional networks architecture that performs real-time detection, tracking, and near-accident detection of road users in traffic video data. The two-stream model consists of a spatial stream network for object detection and a temporal stream network to leverage motion features for multiple-object tracking. We detect near-accidents by incorporating appearance features and motion features from these two networks. Further, we demonstrate that our approaches can be executed in real-time and at a frame rate that is higher than the video frame rate on a variety of videos collected from fisheye and overhead cameras. 
    more » « less
  4. Access to high-quality data is an important barrier in the digital analysis of urban settings, including applications within computer vision and urban design. Diverse forms of data collected from sensors in areas of high activity in the urban environment, particularly at street intersections, are valuable resources for researchers interpreting the dynamics between vehicles, pedestrians, and the built environment. In this paper, we present a high-resolution audio, video, and LiDAR dataset of three urban intersections in Brooklyn, New York, totaling almost 8 unique hours. The data were collected with custom Reconfigurable Environmental Intelligence Platform (REIP) sensors that were designed with the ability to accurately synchronize multiple video and audio inputs. The resulting data are novel in that they are inclusively multimodal, multi-angular, high-resolution, and synchronized. We demonstrate four ways the data could be utilized — (1) to discover and locate occluded objects using multiple sensors and modalities, (2) to associate audio events with their respective visual representations using both video and audio modes, (3) to track the amount of each type of object in a scene over time, and (4) to measure pedestrian speed using multiple synchronized camera views. In addition to these use cases, our data are available for other researchers to carry out analyses related to applying machine learning to understanding the urban environment (in which existing datasets may be inadequate), such as pedestrian-vehicle interaction modeling and pedestrian attribute recognition. Such analyses can help inform decisions made in the context of urban sensing and smart cities, including accessibility-aware urban design and Vision Zero initiatives.

     
    more » « less
  5. Traffic intersections are prime locations for deployment of infrastructure sensors and edge computing nodes to realize the vision of a smart city. It is expected that the needs of a smart city, in regards to traffic and pedestrian traffic systems monitored by cameras/video, can be met by using stateof-the-art artificial-intelligence (AI) based object detectors and trackers. A critical component in designing an effective real-time object detection/tracking pipeline is the understanding of how object density, i.e., the number of objects in a scene, and imageresolution and frame rate influence the performance metrics. This study explores the accuracy and speed metrics with the goal of supporting pipelines that meet the precision and latency needs of a real-time environment. We examine the impact of varying image-resolution, frame rate and object-density on the object detection performance metrics. The experiments on the COSMOS testbed dataset show that varying the frame width from 416 pixels to 832 pixels, and cropping the images to a square resolution, result in the increase in average precision for all object classes. Decreasing the frame rate from 15 fps to 5 fps preserves more than 90% of the highest F1 score achieved for all object classes. The results inform the choice of video preprocessing stages, modifications to established AI-based object detection/tracking methods, and suggest optimal hyper-parameter values. Index Terms—Object Detection, Smart City, Video Resolution, Deep Learning Models. 
    more » « less