skip to main content


Title: Common latitudinal gradients in functional richness and functional evenness across marine and terrestrial systems.
Functional diversity is an important aspect of biodiversity, but its relationship to species diversity in time and space is poorly understood. Here we compare spatial patterns of functional and taxonomic diversity across marine and terrestrial systems to identify commonalities in their respective ecological and evolutionary drivers. We placed species-level ecological traits into comparable multi-dimensional frameworks for two model systems, marine bivalves and terrestrial birds, and used global speciesoccurrence data to examine the distribution of functional diversity with latitude and longitude. In both systems, tropical faunas show high total functional richness (FR) but low functional evenness (FE) (i.e. the tropics contain a highly skewed distribution of species among functional groups). Functional groups that persist toward the poles become more uniform in species richness, such that FR declines and FE rises with latitude in both systems. Temperate assemblages are more functionally even than tropical assemblages subsampled to temperate levels of species richness, suggesting that high species richness in the tropics reflects a high degree of ecological specialization within a few functional groups and/or factors that favour high recent speciation or reduced extinction rates in those groups.  more » « less
Award ID(s):
1633535
NSF-PAR ID:
10119206
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings - Royal Society. Biological Sciences
Volume:
286
ISSN:
0962-8452
Page Range / eLocation ID:
2190745.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The hypothesis that biotic interactions are stronger at lower relative to higher latitudes has a rich history, drawing from ecological and evolutionary theory. While this hypothesis suggests that stronger interactions at lower latitudes may contribute to the maintenance of contemporary patterns of diversity, there remain few standardized biogeographic comparisons of community effects of species interactions.

    Using marine seagrasses as a focal ecosystem of conservation importance and sessile marine invertebrates as model prey, we tested the hypothesis that predation is stronger at lower latitudes and can shape contemporary patterns of prey diversity. To further advance understanding beyond prior studies, we also explored mechanisms that likely underlie a change in interaction outcomes with latitude.

    Multiple observational and experimental approaches were employed to test for effects of predators, and the mechanisms that may underlie these effects, in seagrass ecosystems of the western Atlantic Ocean spanning 30° of latitude from the temperate zone to the tropics.

    In predator exclusion experiments conducted in a temperate and a tropical region, predation decreased sessile invertebrate abundance, richness and diversity on both natural and standardized artificial seagrass at tropical but not temperate sites. Further, predation reduced invertebrate richness at both local and regional scales in the tropics. Additional experiments demonstrated that predation reduced invertebrate recruitment in the tropics but not the temperate zone. Finally, direct observations of predators showed higher but variable consumption rates on invertebrates at tropical relative to temperate latitudes.

    Together, these results demonstrate that strong predation in the tropics can have consequential impacts on prey communities through discrete effects on early life stages as well as longer‐term cumulative effects on community structure and diversity. Our detailed experiments also provide some of the first data linking large‐scale biogeographic patterns, community‐scale interaction outcomes and direct observation of predators in the temperate zone and tropics. Therefore, our results support the hypothesis that predation is stronger in the tropics, but also elucidate some of the causes and consequences of this variation in shaping contemporary patterns of diversity.

     
    more » « less
  2. Taxonomic diversity of benthic marine invertebrate shelf species declines at present by nearly an order of magnitude from the tropics to the poles in each hemisphere along the latitudinal diversity gradient (LDG), most steeply along the western Pacific where shallow-sea diversity is at its tropical maximum. In the Bivalvia, a model system for macroevolution and macroecology, this taxonomic trend is accompanied by a decline in the number of functional groups and an increase in the evenness of taxa distributed among those groups, with maximum functional evenness (FE) in polar waters of both hemispheres. In contrast, analyses of this model system across the two era-defining events of the Phanerozoic, the Permian–Triassic and Cretaceous–Paleogene mass extinctions, show only minor declines in functional richness despite high extinction intensities, resulting in a rise in FE owing to the persistence of functional groups. We hypothesize that the spatial decline of taxonomic diversity and increase in FE along the present-day LDG primarily reflect diversity-dependent factors, whereas retention of almost all functional groups through the two mass extinctions suggests the operation of diversity-independent factors. Comparative analyses of different aspects of biodiversity thus reveal strongly contrasting biological consequences of similarly severe declines in taxonomic diversity and can help predict the consequences for functional diversity among different drivers of past, present, and future biodiversity loss. 
    more » « less
  3. Abstract

    Insect parasitoids may be an exception to the typical biogeographic pattern of increasing species richness at lower latitudes exhibited by most taxa. Evidence for this ‘anomalous’ latitudinal gradient has been derived from observations of hymenopteran parasitoids and it has been argued that other parasitoid groups should show a similar pattern of diversity. Several mechanisms have been proposed to explain this disparity, most notably the nasty host and resource fragmentation hypotheses.

    We review and evaluate these hypotheses with respect to tachinid flies (Diptera: Tachinidae), and bring to the argument evidence from eight trapping surveys from temperate and tropical regions in the Americas including the United States, Costa Rica, and Ecuador. We find no evidence that tachinid fly diversity is lower in the tropics than in the temperate region. Our results, along with other lines of evidence, rather suggest that New World Tachinidae likely conform to the same negative relationship between latitude and richness as their largely phytophagous host taxa.

    We discuss geographic patterns of tachinid diversity in relation to ecological and evolutionary processes, and why they may differ from their hymenopteran parasitoid counterparts. Parasitoid taxa appear to vary strongly in their diversity responses to latitude and we concur with previous researchers that more survey data are necessary to reach strong conclusions about parasitoid latitudinal diversity patterns.

     
    more » « less
  4. Abstract Aim

    The evolutionary causes of the latitudinal diversity gradient are debated. Hypotheses have ultimately invoked either faster rates of diversification in the tropics or more time for diversification owing to the tropical origins of higher taxa. Here, we perform the first test of the diversification rate and time hypotheses in freshwater ray‐finned fishes, a group comprising nearly a quarter of all living vertebrates.

    Location

    Global.

    Time period

    368–0 Ma.

    Major taxa studied

    Extant freshwater ray‐finned fishes.

    Methods

    Using a mega‐phylogeny of actinopterygian fishes and a global database of occurrence records, we estimated net diversification rates, the number of colonizations and regional colonization times of co‐occurring species in freshwater drainage basins. We used generalized additive models to test whether these factors were related to latitude. We then compared the influence of diversification rates, numbers of colonizations, colonization times and surface area on species richness, and how these factors are related to each other.

    Results

    Although both diversification rates and time were related to richness, time had greater explanatory power and was more strongly related to latitude than diversification rates. Other factors (basin surface area and number of colonizations) also helped to explain richness but were unrelated to latitude. The most diverse freshwater basins of the world (Amazon and Congo rivers) were dominated by lineages having Mesozoic origins. The temperate groups dominant today arrived near the Cretaceous–Palaeogene boundary, leaving comparatively less time to build richness. Diversification rates and colonization times were inversely related: recently colonized basins had the fastest rates, whereas ancient species‐rich faunas had slower rates.

    Main conclusions

    We concluded that time is the leading driver of latitudinal disparities in richness in freshwater fish faunas. We suggest that the most likely path to building very high species richness is through diversification over long periods of time, rather than through rapid diversification.

     
    more » « less
  5. 1. Unravelling why species richness shows such dramatic spatial variation is an ongoing challenge. Common to many theories is that increasing species richness (e.g. with latitude) requires a compensatory trade-off on an axis of species' ecology. Spatial variation in species richness may also affect genetic diversity if large numbers of coexisting, related species result in smaller population sizes. 2. Here, we test whether increasing species richness results in differential occupation of morphospace by the constituent species, or decreases species' genetic diversity. We test for two potential mechanisms of morphological accommodation: denser packing in ecomorphological space, and expansion of the space. We then test whether species differ in their nucleotide diversity depending on allopatry or sympatry with relatives, indicative of potential genetic consequences of coexistence that would reduce genetic diversity in sympatry. We ask these questions in a spatially explicit framework, using a global database of avian functional trait measurements in combination with >120,000 sequences downloaded from GenBank. 3. We find that higher species richness within families is not systematically correlated with either packing in morphological space or overdispersion but, at the Class level, we find a general positive relationship between packing and species richness, but that points sampled in the tropics have comparatively greater packing than temperate ones relative to their species richness. We find limited evidence that geographical co-occurrence with closely related species or tropical distributions decreases nucleotide diversity of nuclear genes; however, this requires further analysis. 4. Our results suggest that avian families can accumulate species regionally with minimal tradeoffs or cost, implying that external biotic factors do not limit species richness. 
    more » « less