The hypothesis that biotic interactions are stronger at lower relative to higher latitudes has a rich history, drawing from ecological and evolutionary theory. While this hypothesis suggests that stronger interactions at lower latitudes may contribute to the maintenance of contemporary patterns of diversity, there remain few standardized biogeographic comparisons of community effects of species interactions. Using marine seagrasses as a focal ecosystem of conservation importance and sessile marine invertebrates as model prey, we tested the hypothesis that predation is stronger at lower latitudes and can shape contemporary patterns of prey diversity. To further advance understanding beyond prior studies, we also explored mechanisms that likely underlie a change in interaction outcomes with latitude. Multiple observational and experimental approaches were employed to test for effects of predators, and the mechanisms that may underlie these effects, in seagrass ecosystems of the western Atlantic Ocean spanning 30° of latitude from the temperate zone to the tropics. In predator exclusion experiments conducted in a temperate and a tropical region, predation decreased sessile invertebrate abundance, richness and diversity on both natural and standardized artificial seagrass at tropical but not temperate sites. Further, predation reduced invertebrate richness at both local and regional scales in the tropics. Additional experiments demonstrated that predation reduced invertebrate recruitment in the tropics but not the temperate zone. Finally, direct observations of predators showed higher but variable consumption rates on invertebrates at tropical relative to temperate latitudes. Together, these results demonstrate that strong predation in the tropics can have consequential impacts on prey communities through discrete effects on early life stages as well as longer‐term cumulative effects on community structure and diversity. Our detailed experiments also provide some of the first data linking large‐scale biogeographic patterns, community‐scale interaction outcomes and direct observation of predators in the temperate zone and tropics. Therefore, our results support the hypothesis that predation is stronger in the tropics, but also elucidate some of the causes and consequences of this variation in shaping contemporary patterns of diversity.
- Award ID(s):
- 1633535
- PAR ID:
- 10119206
- Date Published:
- Journal Name:
- Proceedings - Royal Society. Biological Sciences
- Volume:
- 286
- ISSN:
- 0962-8452
- Page Range / eLocation ID:
- 2190745.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Taxonomic diversity of benthic marine invertebrate shelf species declines at present by nearly an order of magnitude from the tropics to the poles in each hemisphere along the latitudinal diversity gradient (LDG), most steeply along the western Pacific where shallow-sea diversity is at its tropical maximum. In the Bivalvia, a model system for macroevolution and macroecology, this taxonomic trend is accompanied by a decline in the number of functional groups and an increase in the evenness of taxa distributed among those groups, with maximum functional evenness (FE) in polar waters of both hemispheres. In contrast, analyses of this model system across the two era-defining events of the Phanerozoic, the Permian–Triassic and Cretaceous–Paleogene mass extinctions, show only minor declines in functional richness despite high extinction intensities, resulting in a rise in FE owing to the persistence of functional groups. We hypothesize that the spatial decline of taxonomic diversity and increase in FE along the present-day LDG primarily reflect diversity-dependent factors, whereas retention of almost all functional groups through the two mass extinctions suggests the operation of diversity-independent factors. Comparative analyses of different aspects of biodiversity thus reveal strongly contrasting biological consequences of similarly severe declines in taxonomic diversity and can help predict the consequences for functional diversity among different drivers of past, present, and future biodiversity loss.more » « less
-
1. Unravelling why species richness shows such dramatic spatial variation is an ongoing challenge. Common to many theories is that increasing species richness (e.g. with latitude) requires a compensatory trade-off on an axis of species' ecology. Spatial variation in species richness may also affect genetic diversity if large numbers of coexisting, related species result in smaller population sizes. 2. Here, we test whether increasing species richness results in differential occupation of morphospace by the constituent species, or decreases species' genetic diversity. We test for two potential mechanisms of morphological accommodation: denser packing in ecomorphological space, and expansion of the space. We then test whether species differ in their nucleotide diversity depending on allopatry or sympatry with relatives, indicative of potential genetic consequences of coexistence that would reduce genetic diversity in sympatry. We ask these questions in a spatially explicit framework, using a global database of avian functional trait measurements in combination with >120,000 sequences downloaded from GenBank. 3. We find that higher species richness within families is not systematically correlated with either packing in morphological space or overdispersion but, at the Class level, we find a general positive relationship between packing and species richness, but that points sampled in the tropics have comparatively greater packing than temperate ones relative to their species richness. We find limited evidence that geographical co-occurrence with closely related species or tropical distributions decreases nucleotide diversity of nuclear genes; however, this requires further analysis. 4. Our results suggest that avian families can accumulate species regionally with minimal tradeoffs or cost, implying that external biotic factors do not limit species richness.more » « less
-
Abstract Aim The latitudinal diversity gradient of increasing species richness from poles to equator is one of the most striking and pervasive spatial patterns of biodiversity. Climate appears to have been key to the formation of the latitudinal diversity gradient, but the processes through which climate shaped species richness remain unclear. We tested predictions of the time for speciation, carrying capacity and diversification rate latitudinal diversity gradient hypotheses in a trans‐marine/freshwater clade of fishes.
Location Global in marine and freshwater environments.
Taxon Clupeiformes (anchovies, herrings, sardines and relatives).
Methods We tested predictions of latitudinal diversity gradient hypotheses using a molecular phylogeny, species distribution data and phylogenetic comparative approaches. To test the time for speciation hypothesis, we conducted ancestral state reconstructions to infer the ages of temperate, subtropical and tropical lineages and frequency of evolutionary transitions between climates. We tested the carry capacity hypothesis by characterizing changes in net diversification rates through time. To test the diversification rate hypothesis, we qualitatively compared the diversification rates of temperate, subtropical and tropical lineages and conducted statistical tests for associations between latitude and diversification rates.
Results We identified four transitions to temperate climates and two transitions out of temperate climates. We found no differences in diversification rates among temperate and tropical clupeiforms. Net diversification rates remained positive in crown Clupeiformes since their origin ~150 Ma in both tropical and temperate lineages. Climate niche characters exhibited strong phylogenetic signal. All temperate clupeiform lineages arose <50 Ma, after the Early Eocene Climatic Optimum.
Main conclusions Our results support the time for speciation hypothesis, which proposes that climate niche conservatism and fluctuations in the extent of temperate climates limited the time for species to accumulate in temperate climates, resulting in the latitudinal diversity gradient. We found no support for the carrying capacity or diversification rate hypotheses.
-
ABSTRACT Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta‐analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower‐latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher‐temperate latitudes generally replaced late‐successional specialists with early‐successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta‐analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes.