skip to main content


Title: Optical localization of a mobile robot using sensitivity-based data fusion
Optical communication is of increasing interest as an alternative to acoustic communication for robots operated in underwater environments. Our previous work presented a method for LED-based Simultaneous Localization and Communication (SLAC) that uses the bearing angles, obtained in establishing line-of-sight (LOS) between two beacon nodes and a mobile robot for communication, for geometric triangulation and thus localization of the robot. In this paper, we consider the problem of optical localization in the setting of a network of beacon nodes, and specifically, how to fuse the measurements from multiple pairs of beacon nodes to obtain the target location. A sensitivity metric, which represents how sensitive the target estimate is with respect to the bearing measurement errors, is used for selecting the desired pair of beacon nodes. The proposed solution is evaluated with extensive simulation and preliminary experimentation, in a setting of three beacon nodes and one mobile node. Comparison with an average-based fusion approach and an approach using a fixed pair of beacon nodes demonstrates the efficacy of the proposed approach.  more » « less
Award ID(s):
1734272 1446793
NSF-PAR ID:
10119220
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
Page Range / eLocation ID:
778-783
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Localization of mobile robots is essential for navigation and data collection. This work presents an optical localization scheme for mobile robots during the robot’s continuous movement, despite that only one bearing angle can be captured at a time. In particular, this paper significantly improves upon our previous works where the robot has to pause its movement in order to acquire the two bearing angle measurements needed for position determination. The latter restriction forces the robot to work in a stop-and-go mode, which constrains the robot’s mobilitty. The proposed scheme exploits the velocity prediction from Kalman filtering, to properly correlate two consecutive measurements of bearing angles with respect to the base nodes (beacons) to produce location measurement. The proposed solution is evaluated in simulation and its advantage is demonstrated through the comparison with the traditional approach where the two consecutive angle measurements are directly used to compute the location.

     
    more » « less
  2. Abstract

    The majority of bird and bat species are incapable of carrying tags that transmit their position to satellites. Given fundamental power requirements for such communication, burdened mass guidelines and battery technology, this constraint necessitates the continued use of very high frequency (VHF) radio beacons. As such, efforts should be made to mitigate their primary deficiencies: detection range, localization time and localization accuracy.

    The integration of a radiotelemetry system with an unmanned aerial vehicle (UAV) could significantly improve the capacity for data collection from VHF tags. We present a UAV‐integrated radiotelemetry system that relies on open source hardware and software. Localization methods, including signal processing, bearing estimation based on principal component analysis, localization techniques and test results, are discussed.

    Using a low‐power beacon applicable for bats and small birds, testing showed that the improved vantage of the UAV‐radiotelemetry system (UAV‐RT) provided significantly higher received signal power compared to the low‐level flights (maximum range beyond 1.4 km). Flight testing of localization methods showed median bearing errors between 2.3° and 6.8°, with localization errors of between 5% and 14% of the distance to the tag. In a direct comparison to an experienced radiotelemetry user, the UAV‐RT system provided bearing and localization estimates with 53% less error.

    This paper introduces the core functionality and use methods of the UAV‐RT system, while presenting baseline localization performance metrics. An associated website hosts plans for assembly and software installation. The methods of UAV‐RT use for tag detection will be further developed in future works. For both the detection and localization problems, the mobility of a flying asset drastically reduces tracker time requirements. A 7‐min flight would be sufficient to collect five equally spaced bearing estimates over a 1‐km transect. The use of a software‐defined radio on the UAV‐RT system will allow for the simultaneous detection and localization of multiple tags.

     
    more » « less
  3. Abstract We present an experimental investigation of spatial audio feedback using smartphones to support direction localization in pointing tasks for people with visual impairments (PVIs). We do this using a mobile game based on a bow-and-arrow metaphor. Our game provides a combination of spatial and non-spatial (sound beacon) audio to help the user locate the direction of the target. Our experiments with sighted, sighted-blindfolded, and visually impaired users shows that (a) the efficacy of spatial audio is relatively higher for PVIs than for blindfolded sighted users during the initial reaction time for direction localization, (b) the general behavior between PVIs and blind-folded individuals is statistically similar, and (c) the lack of spatial audio significantly reduces the localization performance even in sighted blind-folded users. Based on our findings, we discuss the system and interaction design implications for making future mobile-based spatial interactions accessible to PVIs. 
    more » « less
  4. Enabling reliable indoor localization can facilitate several new applications akin to how outdoor localization systems, such as GPS, have facilitated. Currently, a few key hurdles remain that prevent indoor localization from reaching the same stature. These hurdles include complicated deployment, tight time synchronization requirements from time difference of arrival protocols, and a lack of mechanism to allow a pan-building seamless solution. This work explores ways in which these key hurdles can be overcome to enable a more pervasive use of indoor localization. We propose a novel passive ranging scheme where clients overhear ongoing two-way ranging wireless communication between a few infrastructure nodes, and compute their own relative location without transmitting any signals (preserving user privacy). Our approach of performing two-way ranging between infrastructure nodes removes a crucial timing requirement in traditional time-difference-of-arrival methods thereby relaxing the synchronization requirements imposed by previous techniques. We use ultra-wideband wireless (UWB) radios that can easily penetrate building materials so that spanning an entire floor of a large building with just a few infrastructure nodes is possible. We build working prototypes, including the necessary hardware, and demonstrate the plug-and-play nature of our proposed solution. Our evaluation in three indoor spaces shows 1–2 meter-level localization accuracy with areas as large as 2241sq.m. We expect our explorations to re-trigger interest in novel applications for indoor spaces based on fine-grained indoor location knowledge. 
    more » « less
  5. null (Ed.)
    This paper proposes a localization algorithm for an autonomous mobile robot equipped with binary proximity sensors that only indicate when the robot is within a fixed distance from beacons installed at known positions. Our algorithm leverages an ellipsoidal Set Membership State Estimator (SMSE) that maintains an ellipsoidal bound of the position and velocity states of the robot. The estimate incorporates knowledge of the robot's dynamics, bounds on environmental disturbances, and the binary sensor readings. The localization algorithm is motivated by an underwater scenario where accurate range or bearing measurements are often missing. We demonstrate our approach on an experimental platform using an autonomous blimp. 
    more » « less