skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Optical localization of a mobile robot using sensitivity-based data fusion
Optical communication is of increasing interest as an alternative to acoustic communication for robots operated in underwater environments. Our previous work presented a method for LED-based Simultaneous Localization and Communication (SLAC) that uses the bearing angles, obtained in establishing line-of-sight (LOS) between two beacon nodes and a mobile robot for communication, for geometric triangulation and thus localization of the robot. In this paper, we consider the problem of optical localization in the setting of a network of beacon nodes, and specifically, how to fuse the measurements from multiple pairs of beacon nodes to obtain the target location. A sensitivity metric, which represents how sensitive the target estimate is with respect to the bearing measurement errors, is used for selecting the desired pair of beacon nodes. The proposed solution is evaluated with extensive simulation and preliminary experimentation, in a setting of three beacon nodes and one mobile node. Comparison with an average-based fusion approach and an approach using a fixed pair of beacon nodes demonstrates the efficacy of the proposed approach.  more » « less
Award ID(s):
1734272 1446793
NSF-PAR ID:
10119220
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
Page Range / eLocation ID:
778-783
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Localization of mobile robots is essential for navigation and data collection. This work presents an optical localization scheme for mobile robots during the robot’s continuous movement, despite that only one bearing angle can be captured at a time. In particular, this paper significantly improves upon our previous works where the robot has to pause its movement in order to acquire the two bearing angle measurements needed for position determination. The latter restriction forces the robot to work in a stop-and-go mode, which constrains the robot’s mobilitty. The proposed scheme exploits the velocity prediction from Kalman filtering, to properly correlate two consecutive measurements of bearing angles with respect to the base nodes (beacons) to produce location measurement. The proposed solution is evaluated in simulation and its advantage is demonstrated through the comparison with the traditional approach where the two consecutive angle measurements are directly used to compute the location.

     
    more » « less
  2. This paper investigates the resilient control, analysis, recovery, and operation of mobile robot networks in time‐varying formation tracking under deception attacks on global positioning. Local and global tracking control algorithms are presented to ensure redundancy of the mobile robot network and to retain the desired functionality for better resilience. Lyapunov stability analysis is utilized to show the boundedness of the formation tracking error and the stability of the network under various attack modes. A performance index is designed to compare the efficiency of the proposed formation tracking algorithms in situations with or without positioning attacks. Subsequently, a communication‐free decentralized cooperative localization approach based on extended information filters is presented for positioning estimate recovery where the identification of positioning attacks is based on Kullback–Leibler divergence. A gain‐tuning resilient operation is proposed to strategically synthesize formation control and cooperative localization for accurate and rapid system recovery from positioning attacks. The proposed methods are tested using both numerical simulation and experimental validation with a team of quadrotors.

     
    more » « less
  3. Abstract We present an experimental investigation of spatial audio feedback using smartphones to support direction localization in pointing tasks for people with visual impairments (PVIs). We do this using a mobile game based on a bow-and-arrow metaphor. Our game provides a combination of spatial and non-spatial (sound beacon) audio to help the user locate the direction of the target. Our experiments with sighted, sighted-blindfolded, and visually impaired users shows that (a) the efficacy of spatial audio is relatively higher for PVIs than for blindfolded sighted users during the initial reaction time for direction localization, (b) the general behavior between PVIs and blind-folded individuals is statistically similar, and (c) the lack of spatial audio significantly reduces the localization performance even in sighted blind-folded users. Based on our findings, we discuss the system and interaction design implications for making future mobile-based spatial interactions accessible to PVIs. 
    more » « less
  4. null (Ed.)
    This paper proposes a localization algorithm for an autonomous mobile robot equipped with binary proximity sensors that only indicate when the robot is within a fixed distance from beacons installed at known positions. Our algorithm leverages an ellipsoidal Set Membership State Estimator (SMSE) that maintains an ellipsoidal bound of the position and velocity states of the robot. The estimate incorporates knowledge of the robot's dynamics, bounds on environmental disturbances, and the binary sensor readings. The localization algorithm is motivated by an underwater scenario where accurate range or bearing measurements are often missing. We demonstrate our approach on an experimental platform using an autonomous blimp. 
    more » « less
  5. The ability of robots to estimate their location is crucial for a wide variety of autonomous operations. In settings where GPS is unavailable, measurements of transmissions from fixed beacons provide an effective means of estimating a robot’s location as it navigates. The accuracy of such a beacon-based localization system depends both on how beacons are distributed in the environment, and how the robot’s location is inferred based on noisy and potentially ambiguous measurements. We propose an approach for making these design decisions automatically and without expert supervision, by explicitly searching for the placement and inference strategies that, together, are optimal for a given environment. Since this search is computationally expensive, our approach encodes beacon placement as a differential neural layer that interfaces with a neural network for inference. This formulation allows us to employ standard techniques for training neural networks to carry out the joint optimization. We evaluate this approach on a variety of environments and settings, and find that it is able to discover designs that enable high localization accuracy. 
    more » « less