The problem of knowledge graph (KG) reasoning has been widely explored by traditional rule-based systems and more recently by knowledge graph embedding methods. While logical rules can capture deterministic behavior in a KG, they are brittle and mining ones that infer facts beyond the known KG is challenging. Probabilistic embedding methods are effective in capturing global soft statistical tendencies and reasoning with them is computationally efficient. While embedding representations learned from rich training data are expressive, incompleteness and sparsity in real-world KGs can impact their effectiveness. We aim to leverage the complementary properties of both methods to develop a hybrid model that learns both high-quality rules and embeddings simultaneously. Our method uses a cross feedback paradigm wherein an embedding model is used to guide the search of a rule mining system to mine rules and infer new facts. These new facts are sampled and further used to refine the embedding model. Experiments on multiple benchmark datasets show the effectiveness of our method over other competitive standalone and hybrid baselines. We also show its efficacy in a sparse KG setting. 
                        more » 
                        « less   
                    
                            
                            Data Poisoning Attack against Knowledge Graph Embedding
                        
                    
    
            Knowledge graph embedding (KGE) is a technique for learning continuous embeddings for entities and relations in the knowledge graph. Due to its benefit to a variety of downstream tasks such as knowledge graph completion, question answering and recommendation, KGE has gained significant attention recently. Despite its effectiveness in a benign environment, KGE's robustness to adversarial attacks is not well-studied. Existing attack methods on graph data cannot be directly applied to attack the embeddings of knowledge graph due to its heterogeneity. To fill this gap, we propose a collection of data poisoning attack strategies, which can effectively manipulate the plausibility of arbitrary targeted facts in a knowledge graph by adding or deleting facts on the graph. The effectiveness and efficiency of the proposed attack strategies are verified by extensive evaluations on two widely-used benchmarks. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10119251
- Date Published:
- Journal Name:
- International Joint Conference on Artificial Intelligence
- Page Range / eLocation ID:
- 4853 to 4859
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Graph contrastive learning (GCL) has emerged as a successful method for self-supervised graph learning. It involves generating augmented views of a graph by augmenting its edges and aims to learn node embeddings that are invariant to graph augmentation. Despite its effectiveness, the potential privacy risks associated with GCL models have not been thoroughly explored. In this paper, we delve into the privacy vulnerability of GCL models through the lens of link membership inference attacks (LMIA). Specifically, we focus on the federated setting where the adversary has white-box access to the node embeddings of all the augmented views generated by the target GCL model. Designing such white-box LMIAs against GCL models presents a significant and unique challenge due to potential variations in link memberships among node pairs in the target graph and its augmented views. This variability renders members indistinguishable from non-members when relying solely on the similarity of their node embeddings in the augmented views. To address this challenge, our in-depth analysis reveals that the key distinguishing factor lies in the similarity of node embeddings within augmented views where the node pairs share identical link memberships as those in the training graph. However, this poses a second challenge, as information about whether a node pair has identical link membership in both the training graph and augmented views is only available during the attack training phase. This demands the attack classifier to handle the additional “identical-membership information which is available only for training and not for testing. To overcome this challenge, we propose GCL-LEAK, the first link membership inference attack against GCL models. The key component of GCL-LEAK is a new attack classifier model designed under the “Learning Using Privileged Information (LUPI)” paradigm, where the privileged information of “same-membership” is encoded as part of the attack classifier's structure. Our extensive set of experiments on four representative GCL models showcases the effectiveness of GCL-LEAK. Additionally, we develop two defense mechanisms that introduce perturbation to the node embeddings. Our empirical evaluation demonstrates that both defense mechanisms significantly reduce attack accuracy while preserving the accuracy of GCL models.more » « less
- 
            Representing entities and relations in an embedding space is a well-studied approach for machine learning on relational data. Existing approaches, however, primarily focus on improving accuracy and overlook other aspects such as robustness and interpretability. In this paper, we propose adversarial modifications for link prediction models: identifying the fact to add into or remove from the knowledge graph that changes the prediction for a target fact after the model is retrained. Using these single modifications of the graph, we identify the most influential fact for a predicted link and evaluate the sensitivity of the model to the addition of fake facts. We introduce an efficient approach to estimate the effect of such modifications by approximating the change in the embeddings when the knowledge graph changes. To avoid the combinatorial search over all possible facts, we train a network to decode embeddings to their corresponding graph components, allowing the use of gradient-based optimization to identify the adversarial modification. We use these techniques to evaluate the robustness of link prediction models (by measuring sensitivity to additional facts), study interpretability through the facts most responsible for predictions (by identifying the most influential neighbors), and detect incorrect facts in the knowledge base.more » « less
- 
            Scene understanding is a key technical challenge within the autonomous driving domain. It requires a deep semantic understanding of the entities and relations found within complex physical and social environments that is both accurate and complete. In practice, this can be accomplished by representing entities in a scene and their relations as a knowledge graph (KG). This scene knowledge graph may then be utilized for the task of entity prediction, leading to improved scene understanding. In this paper, we will define and formalize this problem as Knowledge-based Entity Prediction (KEP). KEP aims to improve scene understanding by predicting potentially unrecognized entities by leveraging heterogeneous, high-level semantic knowledge of driving scenes. An innovative neuro-symbolic solution for KEP is presented, based on knowledge-infused learning, which 1) introduces a dataset agnostic ontology to describe driving scenes, 2) uses an expressive, holistic representation of scenes with knowledge graphs, and 3) proposes an effective, non-standard mapping of the KEP problem to the problem of link prediction (LP) using knowledge-graph embeddings (KGE). Using real, complex and high-quality data from urban driving scenes, we demonstrate its effectiveness by showing that the missing entities may be predicted with high precision (0.87 Hits@1) while significantly outperforming the non-semantic/rule-based baselines.more » « less
- 
            Knowledge graph embeddings (KGE) have been extensively studied to embed large-scale relational data for many real-world applications. Existing methods have long ignored the fact many KGs contain two fundamentally different views: high-level ontology-view concepts and fine-grained instance-view entities. They usually embed all nodes as vectors in one latent space. However, a single geometric representation fails to capture the structural differences between two views and lacks probabilistic semantics towards concepts’ granularity. We propose Concept2Box, a novel approach that jointly embeds the two views of a KG using dual geometric representations. We model concepts with box embeddings, which learn the hierarchy structure and complex relations such as overlap and disjoint among them. Box volumes can be interpreted as concepts’ granularity. Different from concepts, we model entities as vectors. To bridge the gap between concept box embeddings and entity vector embeddings, we propose a novel vector-to-box distance metric and learn both embeddings jointly. Experiments on both the public DBpedia KG and a newly-created industrial KG showed the effectiveness of Concept2Box.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    