skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: RENEW: Programmable and Observable Massive MIMO Networks
Massive MIMO is one of the key technologies in 5G wireless broadband, capable of delivering substantial improvements in capacity of next-generation wireless networks. However, due to its inherent complexity, its operation, reconfiguration, and enhancement present significant challenges and risks. In this paper we present RENEW, a fully programmable and observable massive MIMO network. We present the architectural design for full programmability at every layer of the wireless stack, from the radio hardware, including PHY and MAC layer configurations, all the way up to the network core functionality using network function virtualization. We also present mechanisms to enable observability at every layer of the stack. These include various indicators in the radio and core access network, hence enabling effective monitoring, troubleshooting, and performance evaluation of the network at large.  more » « less
Award ID(s):
1717218
PAR ID:
10119340
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2018 IEEE 52nd Asilomar Conference on Signals, Systems, and Computers
Page Range / eLocation ID:
1654 to 1658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Overcoming the conventional trade-off between throughput and bit error rate (BER) performance, versus computational complexity is a long-term challenge for uplink Multiple-Input Multiple-Output (MIMO) detection in base station design for the cellular 5G New Radio roadmap, as well as in next generation wireless local area networks. In this work, we present ParaMax, a MIMO detector architecture that for the first time brings to bear physics-inspired parallel tempering algorithmic techniques [28, 50, 67] on this class of problems. ParaMax can achieve near optimal maximum-likelihood (ML) throughput performance in the Large MIMO regime, Massive MIMO systems where the base station has additional RF chains, to approach the number of base station antennas, in order to support even more parallel spatial streams. ParaMax is able to achieve a near ML-BER performance up to 160 × 160 and 80 × 80 Large MIMO for low-order modulations such as BPSK and QPSK, respectively, only requiring less than tens of processing elements. With respect to Massive MIMO systems, in 12 × 24 MIMO with 16-QAM at SNR 16 dB, ParaMax achieves 330 Mbits/s near-optimal system throughput with 4--8 processing elements per subcarrier, which is approximately 1.4× throughput than linear detector-based Massive MIMO systems. 
    more » « less
  2. User demand for increasing amounts of wireless capacity continues to outpace supply, and so to meet this demand, significant progress has been made in new MIMO wireless physical layer techniques. Higher-performance systems now remain impractical largely only because their algorithms are extremely computationally demanding. For optimal performance, an amount of computation that increases at an exponential rate both with the number of users and with the data rate of each user is often required. The base station's computational capacity is thus becoming one of the key limiting factors on wireless capacity. QuAMax is the first large MIMO cloud-based radio access network design to address this issue by leveraging quantum annealing on the problem. We have implemented QuAMax on the 2,031 qubit D-Wave 2000Q quantum annealer, the state-of-the-art in the field. Our experimental results evaluate that implementation on real and synthetic MIMO channel traces, showing that 30 US of compute time on the 2000Q can enable 48 user, 48 AP antenna BPSK communication at 20 dB SNR with a bit error rate of 10^(-6) and a 1,500 byte frame error rate of 10^(-4). 
    more » « less
  3. | The relentless demand for data in our society has driven the continuous evolution of wireless technologies to enhance network capacity. While current deployments of 5G have made strides in this direction using massive multiple-input–multiple-output (MIMO) and millimeter-wave (mmWave) bands, all existing wireless systems operate in a half-duplex (HD) mode. Full-duplex (FD) wireless communication, on the other hand, enables simultaneous transmission and reception (STAR) of signals at the same frequency, offering advantages such as enhanced spectrum efficiency, improved data rates, and reduced latency. This article presents a comprehensive review of FD wireless systems, with a focus on hardware design, implementation, cross-layered considerations, and applications. The major bottleneck in achieving FD communication is the presence of self-interference (SI) signals from the transmitter (TX) to the receiver, and achieving SI cancellation (SIC) with real-time adaption is critical for FD deployment. The review starts by establishing a system-level understanding of FD wireless systems, followed by a review of the architectures of antenna interfaces and integrated RF and baseband (BB) SI cancellers, which show promise in enabling low-cost, small-form-factor, portable FD systems. We then discuss digital cancellation techniques, including digital signal processing (DSP)- and learning-based algorithms. The challenges presented by FD phased-array and MIMO systems are discussed, followed by system-level aspects, including optimization algorithms, opportunities in the higher layers of the networking protocol stack, and testbed integration. Finally, the relevance of FD systems in applications such as next-generation (xG 
    more » « less
  4. An important aspect of 5G networks is the development of Radio Access Network (RAN) slicing, a concept wherein the virtualized infrastructure of wireless networks is subdivided into slices (or enterprises), tailored to fulfill specific use-cases. A key focus in this context is the efficient radio resource allocation to meet various enterprises’ service-level agreements (SLAs). In this work, we introduce Helix: a channel-aware and SLAaware RAN slicing framework for massive multiple input multiple output (MIMO) networks where resource allocation extends to incorporate the spatial dimension available through beamforming. Essentially, the same time-frequency resource block (RB) can be shared across multiple users through multiple antennas. Notably, certain enterprises, particularly those operating critical infrastructure, necessitate dedicated RB allocation, denoted as private networks, to ensure security. Conversely, some enterprises would allow resource sharing with others in the public network to maintain network performance while minimizing capital expenditure. Building upon this understanding, Helix comprises scheduling schemes under both scenarios: where different slices share the same set of RBs, and where they require exclusivity of allocated RBs. We validate the efficacy of our proposed schedulers through simulation by utilizing a channel data set collected from a real-world massive MIMO testbed. Our assessments demonstrate that resource sharing across slices using our approach can lead up to 60.9% reduction in RB usage compared to other approaches. Moreover, our proposed schedulers exhibit significantly enhanced operational efficiency, with significantly faster running time compared to exhaustive greedy approaches while meeting the stringent 5G sub-millisecond-level latency requirement. 
    more » « less
  5. An important aspect of 5G networks is the development of Radio Access Network (RAN) slicing, a concept wherein the virtualized infrastructure of wireless networks is subdivided into slices (or enterprises), tailored to fulfill specific use-cases. A key focus in this context is the efficient radio resource allocation to meet various enterprises' service-level agreements (SLAs). In this work, we introduce Helix: a channel-aware and SLA-aware RAN slicing framework for massive multiple input multiple output (MIMO) networks where resource allocation extends to incorporate the spatial dimension available through beamforming. Essentially, the same time-frequency resource block (RB) can be shared across multiple users through multiple antennas. Notably, certain enterprises, particularly those operating critical infrastructure, necessitate dedicated RB allocation, denoted as private networks, to ensure security. Conversely, some enterprises would allow resource sharing with others in the public network to maintain network performance while minimizing capital expenditure. Building upon this understanding, Helix comprises scheduling schemes under both scenarios: where different slices share the same set of RBs, and where they require exclusivity of allocated RBs. We validate the efficacy of our proposed schedulers through simulation by utilizing a channel data set collected from a real-world massive MIMO testbed. Our assessments demonstrate that resource sharing across slices using our approach can lead up to 60.9% reduction in RB usage compared to other approaches. Moreover, our proposed schedulers exhibit significantly enhanced operational efficiency, with significantly faster running time compared to exhaustive greedy approaches while meeting the stringent 5G sub-millisecond-level latency requirement. 
    more » « less