skip to main content


Title: Kalman Filter Based Electricity Market States Forecasting: A State-Space Framework
Gaining money and high profit is the dream of electricity market investors; however, it requires accurate financial knowledge and price forecasting ability. Most of the investors are used the electricity market historical information for forecasting power generation, consumption, and utility price. Unfortunately, electricity market time-series profile is high volatility and change over time, so the factual data cannot accurately reflect the electricity market states such as power consumption and generation. In the literature, there is no systematic way or suitable models that can fit, analyze, and predict electricity market system states over time. Interestingly, this paper proposes an electricity market state-space model which is obtained by a set of electricity market differential equations. After simplifying of these equations, the continuous-time electricity market state-space model is derived. Using discrete-time step size parameter, the continuous-time system is discretised. Furthermore, the noisy measurements are obtained by a set of smart sensors. Finally, the Kalmna filter based electricity market state forecasting algorithm is developed based on noisy measurements. Simulation results show that the proposed algorithm can properly forecast the electricity market states. Consequently, this kind of model and algorithm can help to develop the electricity market simulator and assist investor to participate/invest electricity market regardless of the world economic downtown.  more » « less
Award ID(s):
1837472
NSF-PAR ID:
10120570
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of 9th IEEE International Conference on CYBER Technology in Automation, Control and Intelligent Systems (IEEE-CYBER 2019)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Expansion of distributed solar photovoltaic (PV) and natural gas‐fired generation capacity in the United States has put a renewed spotlight on methods and tools for power system planning and grid modernization. This article investigates the impact of increasing natural gas‐fired electricity generation assets on installed distributed solar PV systems in the Pennsylvania–New Jersey–Maryland (PJM) Interconnection in the United States over the period 2008–2018. We developed an empirical dynamic panel data model using the system‐generalized method of moments (system‐GMM) estimation approach. The model accounts for the impact of past and current technical, market and policy changes over time, forecasting errors, and business cycles by controlling for PJM jurisdictions‐level effects and year fixed effects. Using an instrumental variable to control for endogeneity, we concluded that natural gas does not crowd out renewables like solar PV in the PJM capacity market; however, we also found considerable heterogeneity. Such heterogeneity was displayed in the relationship between solar PV systems and electricity prices. More interestingly, we found no evidence suggesting any relationship between distributed solar PV development and nuclear, coal, hydro, or electricity consumption. In addition, considering policy effects of state renewable portfolio standards, net energy metering, differences in the PJM market structure, and other demand and cost‐related factors proved important in assessing their impacts on solar PV generation capacity, including energy storage as a non‐wire alternative policy technique.

    This article is categorized under:

    Photovoltaics > Economics and Policy

    Fossil Fuels > Climate and Environment

    Energy Systems Economics > Economics and Policy

     
    more » « less
  2. null (Ed.)
    Hydropower is the largest renewable energy source for electricity generation in the world, with numerous benefits in terms of: environment protection (near-zero air pollution and climate impact), cost-effectiveness (long-term use, without significant impacts of market fluctuation), and reliability (quickly respond to surge in demand). However, the effectiveness of hydropower plants is affected by multiple factors such as reservoir capacity, rainfall, temperature and fluctuating electricity demand, and particularly their complicated relationships, which make the prediction/recommendation of station operational output a difficult challenge. In this paper, we present DeepHydro, a novel stochastic method for modeling multivariate time series (e.g., water inflow/outflow and temperature) and forecasting power generation of hydropower stations. DeepHydro captures temporal dependencies in co-evolving time series with a new conditioned latent recurrent neural networks, which not only considers the hidden states of observations but also preserves the uncertainty of latent variables. We introduce a generative network parameterized on a continuous normalizing flow to approximate the complex posterior distribution of multivariate time series data, and further use neural ordinary differential equations to estimate the continuous-time dynamics of the latent variables constituting the observable data. This allows our model to deal with the discrete observations in the context of continuous dynamic systems, while being robust to the noise. We conduct extensive experiments on real-world datasets from a large power generation company consisting of cascade hydropower stations. The experimental results demonstrate that the proposed method can effectively predict the power production and significantly outperform the possible candidate baseline approaches. 
    more » « less
  3. The classic Vickrey-Clarke-Groves (VCG) mech-anism ensures incentive compatibility, i.e., that truth-telling of all agents is a dominant strategy, for a static one-shot game. However, in a dynamic environment that unfolds over time, the agents’ intertemporal payoffs depend on the expected future controls and payments, and a direct extension of the VCG mechanism is not sufficient to guarantee incentive compati-bility. In fact, it does not appear to be feasible to construct mechanisms that ensure the dominance of dynamic truth-telling for agents comprised of general stochastic dynamic systems. The contribution of this paper is to show that such a dynamic stochastic extension does exist for the special case of Linear-Quadratic-Gaussian (LQG) agents with a careful construction of a sequence of layered payments over time. We propose a layered version of a modified VCG mechanism for payments that decouples the intertemporal effect of current bids on future payoffs, and prove that truth-telling of dynamic states forms a dominant strategy if system parameters are known and agents are rational. An important example of a problem needing such optimal dynamic coordination of stochastic agents arises in power systems where an Independent System Operator (ISO) has to ensure balance of generation and consumption at all time instants, while ensuring social optimality (maximization of the sum of the utilities of all agents). Addressing strategic behavior is critical as the price-taking assumption on market participants may not hold in an electricity market. Agents, can lie or otherwise game the bidding system. The challenge is to determine a bidding scheme between all agents and the ISO that maximizes social welfare, while taking into account the stochastic dynamic models of agents, since renewable energy resources such as solar/wind are stochastic and dynamic in nature, as are consumptions by loads which are influenced by factors such as local temperatures and thermal inertias of facilities. 
    more » « less
  4. Abstract

    Prosumers adopt distributed energy resources (DER) to cover part of their own consumption and to sell surplus energy. Although individual prosumers are too dispersed to exert operational market power, they may collectively hold a strategic advantage over conventional generation in selecting DER capacity via aggregators. We devise a bilevel model to examine DER capacity sizing by a collective prosumer as a Stackelberg leader in an electricity industry where conventional generation may exert market power in operations. At the upper level, the prosumer chooses DER capacity in anticipation of lower-level operations by conventional generation and DER output. We demonstrate that exertion of market power in operations by conventional generation and the marginal cost of conventional generation affect DER investment by the prosumer in a nonmonotonic manner. Intuitively, in an industry where conventional generation exerts market power in operations similar to a monopoly (MO), the prosumer invests in more DER capacity than under perfectly competitive operations (PC) to take advantage of a high market-clearing price. However, if the marginal cost of conventional generation is high enough, then this intuitive result is reversed as the prosumer adopts more DER capacity under PC than under MO. This is because the high marginal cost of conventional generation prevents the market-clearing price from decreasing, thereby allowing for higher prosumer revenues. Moreover, competition relieves the chokehold on consumption under MO, which further incentivises the prosumer to expand DER capacity to capture market share. We prove the existence of a critical threshold for the marginal cost of conventional generation that leads to this counterintuitive result. Finally, we propose a countervailing regulatory mechanism that yields welfare-enhancing DER investment even in deregulated electricity industries.

     
    more » « less
  5. Abstract

    India’s coal-heavy electricity system is the world’s third largest and a major emitter of air pollution and greenhouse gas emissions. Consequently, it remains a focus of decarbonization and air pollution control policy. Considerable heterogeneity exists between states in India in terms of electricity demand, generation fuel mix, and emissions. However, no analysis has disentangled the expected, state-level spatial differences and interactions in air pollution mortality under current and future power sector policies in India. We use a reduced-complexity air quality model to evaluate annual PM2.5mortalities associated with electricity production and consumption in each state in India. Furthermore, we test emissions control, carbon tax, and market integration policies to understand how changes in power sector operations affect ambient PM2.5concentrations and associated mortality. We find poorer, coal-dependent states in eastern India disproportionately face the burden of PM2.5mortality from electricity in India by importing deaths. Wealthier, high renewable energy states in western and southern India meanwhile face a lower burden by exporting deaths. This suggests that as these states have adopted more renewable generation, they have shifted their coal generation and associated PM2.5mortality to eastern areas. We also find widespread sulfur emissions control decreases mortality by about 50%. Likewise, increasing carbon taxes in the short term reduces annual mortality by up to 9%. Market reform where generators between states pool to meet demand reduces annual mortality by up to 8%. As India looks to increase renewable energy, implement emissions control regulations, establish a carbon trading market, and move towards further power market integration, our results provide greater spatial detail for a federally structured Indian electricity system.

     
    more » « less