skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of metal chlorides on glucose mutarotation and possible implications on humin formation
An in situ Raman spectroscopic kinetic study of the glucose mutarotation reaction is presented herein. The effect of metal chlorides on the ease of the ring opening process is discussed. It is shown that SnCl 4 facilitates the mutarotation process towards the β-anomer extremely fast, while CrCl 3 appears to promote the formation of the α-anomer of glucose. The infrared spectra of humins prepared in different Lewis acids underscore the possibility of multiple reaction pathways.  more » « less
Award ID(s):
1705825
PAR ID:
10120635
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Reaction Chemistry & Engineering
Volume:
4
Issue:
2
ISSN:
2058-9883
Page Range / eLocation ID:
273 to 277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A reaction-diffusion-advection glucose metabolism model is proposed to describe the spatiotemporal behaviors of glucose in the pancreatic islet. The global existence and boundedness of the solution to the model are proved, and the existence and uniqueness of the positive steady state are established. Spatiotemporal sensitivity index and correlation index are proposed to identify high-impact physiological factors and illustrate parameter interdependency. Additionally, different stages of glucose metabolism such as hyperinsulinemia, hypoglycemia, euglycemia, and diabetes are simulated to demonstrate the system’s dynamics under varying physiological conditions. These findings provide valuable guidance in the therapeutic process, aiding in the development of effective interventions. 
    more » « less
  2. Abstract Among many biomass‐derived intermediate compounds, 5‐hydroxymethylfurfural (HMF) has been regarded as a platform chemical because it can be used to produce numerous valuable products. However, the difficulty of HMF isolation from reaction media coupled with its poor stability have significantly inhibited its large‐scale production and application. In this work, we report a single‐step process for the direct production of HMF from glucose using green chemical methods. Optimized glucose isomerization and dehydration under microwave irradiation achieved a respectable HMF yield (70 %) using a biphasic solvent mixture (water/THF), high glucose concentration (30 % w/v), catalytic amounts of AlCl3(5 mol%) and HCl (15 mol%). The reaction can be completed within minutes at 165 °C. Overall, our microwave‐assisted strategy enables the direct conversion of commercially available glucose to the highly valuable platform chemical HMF without the use of expensive solvents or catalysts, suggesting an economically attractive approach for upgrading carbohydrates. 
    more » « less
  3. Abstract In this work, glucose oxidase (GOx) cross‐linking to a single‐wall carbon nanotubes (SWCNTs)‐poly(ethylenimine) (PEI) matrix is investigated using cyclic voltammetry (CV) for its direct electrochemistry and kinetics with presence of glucose. The electrochemistry of the bound flavin cofactor, flavin adenine dinucleotide (FAD) of the GOx, is impeded by glucose and recovered at absence of glucose, whereas a non‐specific sugar (e. g. sucrose) has no such effect. The Faradaic current of the GOx in CV decreases when the concentration of glucose increases, while the calculated electron transfer (ET) rate constant (k0) of the GOx presents a monotonic increment manner up to 144 % at 70 mM glucose concentration vs. absence of glucose in a deaerated electrolyte solution. Thek0and Faradaic current changes demonstrate a strong linear relationship to logarithmic value of glucose concentration up to 20 mM. These results suggest that the entrapped GOx, when exposing to glucose, becomes deactivated in the direct electrochemistry. Further mechanistic analysis suggests the ET reaction of GOx shows a responsive correlation to the non‐ergodicity of those active GOx sites. A control experiment using pure FAD immobilized in the matrix doesn't show responses to glucose addition. 
    more » « less
  4. null (Ed.)
    In an attempt to refine a CAN-mediated synthesis of 1,3,4,6-tetra- O -acetyl-α- d -glucopyranose (2-OH glucose) we unexpectedly discovered that this reaction proceeds via the intermediacy of glycosyl nitrates. Improved mechanistic understanding of this reaction led to the development of a more versatile synthesis of 2-OH glucose from a variety of precursors. Also demonstrated is the conversion of 2-OH glucose into a variety of building blocks differentially protected at C-2, a position that is generally hard to protect regioselectively in the glucopyranose series. 
    more » « less
  5. Transition metals have been explored extensively for non-enzymatic electrochemical detection of glucose. However, to enable glucose oxidation, the majority of reports require highly alkaline electrolytes which can be damaging to the sensors and hazardous to handle. In this work, we developed a non-enzymatic sensor for detection of glucose in near-neutral solution based on copper-nickel electrodes which are electrochemically modified in phosphate-buffered saline (PBS). Nickel and copper were deposited using chronopotentiometry, followed by a two-step annealing process in air (Step 1: at room temperature and Step 2: at 150 °C) and electrochemical stabilization in PBS. Morphology and chemical composition of the electrodes were characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic voltammetry was used to measure oxidation reaction of glucose in sodium sulfate (100 mM, pH 6.4). The PBS-Cu-Ni working electrodes enabled detection of glucose with a limit of detection (LOD) of 4.2 nM, a dynamic response from 5 nM to 20 mM, and sensitivity of 5.47 ± 0.45 μA cm−2/log10(mole.L−1) at an applied potential of 0.2 V. In addition to the ultralow LOD, the sensors are selective toward glucose in the presence of physiologically relevant concentrations of ascorbic acid and uric acid spiked in artificial saliva. The optimized PBS-Cu-Ni electrodes demonstrate better stability after seven days storage in ambient compared to the Cu-Ni electrodes without PBS treatment. 
    more » « less