skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Glucose Effect on Direct Electrochemistry and Electron Transfer Reaction of Glucose Oxidase Entrapped in a Carbon Nanotube‐Polymer Matrix
Abstract In this work, glucose oxidase (GOx) cross‐linking to a single‐wall carbon nanotubes (SWCNTs)‐poly(ethylenimine) (PEI) matrix is investigated using cyclic voltammetry (CV) for its direct electrochemistry and kinetics with presence of glucose. The electrochemistry of the bound flavin cofactor, flavin adenine dinucleotide (FAD) of the GOx, is impeded by glucose and recovered at absence of glucose, whereas a non‐specific sugar (e. g. sucrose) has no such effect. The Faradaic current of the GOx in CV decreases when the concentration of glucose increases, while the calculated electron transfer (ET) rate constant (k0) of the GOx presents a monotonic increment manner up to 144 % at 70 mM glucose concentration vs. absence of glucose in a deaerated electrolyte solution. Thek0and Faradaic current changes demonstrate a strong linear relationship to logarithmic value of glucose concentration up to 20 mM. These results suggest that the entrapped GOx, when exposing to glucose, becomes deactivated in the direct electrochemistry. Further mechanistic analysis suggests the ET reaction of GOx shows a responsive correlation to the non‐ergodicity of those active GOx sites. A control experiment using pure FAD immobilized in the matrix doesn't show responses to glucose addition.  more » « less
Award ID(s):
1832134
PAR ID:
10239388
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemistrySelect
Volume:
5
Issue:
39
ISSN:
2365-6549
Format(s):
Medium: X Size: p. 12224-12231
Size(s):
p. 12224-12231
Sponsoring Org:
National Science Foundation
More Like this
  1. The burgeoning field of continuous glucose monitoring (CGM) for diabetes management faces significant challenges, particularly in achieving precise and stable biosensor performance under changing environmental conditions such as varying glucose concentrations and O2 levels. To address this, we present a novel biosensor based on the electroless coupling of glucose oxidation catalyzed by flavin-dependent glucose dehydrogenase (FAD-GDH) and O2 reduction catalyzed by bilirubin oxidase (BOD) via a redox polymer, dimethylferrocene-modified linear poly(ethylenimine), FcMe2-LPEI. Initial cyclic voltammetry tests confirm the colocalization of both enzymatic reactions within the potential range of the polymer, indicating an effective electron shuttle mechanism. As a result, we created a hybrid biosensor that operates at open-circuit potential (OCP). It can detect glucose concentrations of up to 100 mM under various O2 conditions, including ambient air. This resulted from optimizing the enzyme ratio to 120 ± 10 mUBOD·UFAD-GDH–1·atmO2–1. This biosensor is highly sensitive, a crucial feature for CGM applications. This distinguishes it from FAD-GDH traditional biosensors, which require a potential to be applied to measure glucose concentrations up to 30 mM. In addition, this biosensor demonstrates the ability to function as a noninvasive, external device that can adapt to changing glucose levels, paving the way for its use in diabetes care and, potentially, personalized healthcare devices. Furthermore, by leveraging the altered metabolic pathways in tumor cells, this system architecture opened up new avenues for targeted glucose scavenging and O2 reduction in cancer therapy. 
    more » « less
  2. A disposable paper-based glucose biosensor with direct electron transfer (DET) of glucose oxidase (GOX) was developed through simple covalent immobilization of GOX on a carbon electrode surface using zero-length cross-linkers. This glucose biosensor exhibited a high electron transfer rate (ks, 3.363 s−1) as well as good affinity (km, 0.03 mM) for GOX while keeping innate enzymatic activities. Furthermore, the DET-based glucose detection was accomplished by employing both square wave voltammetry and chronoamperometric techniques, and it achieved a glucose detection range from 5.4 mg/dL to 900 mg/dL, which is wider than most commercially available glucometers. This low-cost DET glucose biosensor showed remarkable selectivity, and the use of the negative operating potential avoided interference from other common electroactive compounds. It has great potential to monitor different stages of diabetes from hypoglycemic to hyperglycemic states, especially for self-monitoring of blood glucose. 
    more » « less
  3. null (Ed.)
    Salivary glucose oxidase (GOX) is one of the most abundant salivary proteins in generalist caterpillar Helicoverpa zea. GOX has been hypothesized to benefit H. zea by modulating direct defense responses of plants. Although the function of this protein has been studied, its role remains unclear. The study aims to test the hypothesis that GOX induces similar defensive responses among Solanaceous plants, and has similar consequences for larval performance of H. zea. Using six different plants in Solanaceae, including tomato (Solanum lycopersicum cv. Better Boy and S. lycopersicum var. cerasiforme), bell pepper (Capsicum annuum cv. Revolution), habanero pepper (Capsicum chinense), tomatillo (Physalis philadelphica cv. Tamayo), and tobacco (N. benthamiana), we tested the impact of GOX on induction of two common defense proteins, trypsin protease inhibitors (TPI) and polyphenol oxidases (PPO), and on relative growth rate of H. zea larvae. We found that GOX specifically induced TPI activity in tomato and habanero pepper, and the level of defense protein depended on leaf location. In addition, prior application of GOX did not increase the performance of H. zea in any plant tested. Changes in performance in tomato and habanero pepper matched the induction of TPI. In summary, our findings indicate that GOX induces similar defense responses in some Solanacean plants, but largely depends on species/genotype of plant, and that the presence of GOX did not benefit larval H. zea by modulating direct defense responses of plants. Other mechanisms must be involved in driving the evolution of this salivary protein. 
    more » « less
  4. Flavin-based electron bifurcation allows enzymes to redistribute energy among electrons by coupling endergonic and exergonic electron transfer reactions. Diverse bifurcating enzymes employ a two-flavin electron transfer flavoprotein (ETF) that accepts hydride from NADH at a flavin (the so-called bifurcating FAD, Bf-FAD). The Bf-FAD passes one electron exergonically to a second flavin thereby assuming a reactive semiquinone state able to reduce ferredoxin or flavodoxin semiquinone. The flavin that accepts one electron and passes it on via exergonic electron transfer is known as the electron transfer FAD (ET-FAD) and is believed to correspond to the single FAD present in canonical ETFs, in domain II. The Bf-FAD is believed to be the one that is unique to bifurcating ETFs, bound between domains I and III. This very reasonable model has yet to be challenged experimentally. Herein we used site-directed mutagenesis to disrupt FAD binding to the presumed Bf site between domains I and III, in the Bf-ETF from Rhodopseudomonas palustris ( Rpa ETF). The resulting protein contained only 0.80 ± 0.05 FAD, plus 1.21 ± 0.04 bound AMP as in canonical ETFs. The flavin was not subject to reduction by NADH, confirming absence of Bf-FAD. The retained FAD displayed visible circular dichroism (CD) similar to that of the ET-FAD of Rpa ETF. Likewise, the mutant underwent two sequential one-electron reductions forming and then consuming anionic semiquinone, reproducing the reactivity of the ET-FAD. These data confirm that the retained FAD in domain II corresponds the ET-FAD. Quantum chemical calculations of the absorbance and CD spectra of each of WT Rpa ETF's two flavins reproduced the observed differences between their CD and absorbance signatures. The calculations for the flavin bound in domain II agreed better with the spectra of the ET-flavin, and those calculated based on the flavin between domains I and III agreed better with spectra of the Bf-flavin. Thus calculations independently confirm the locations of each flavin. We conclude that the site in domain II harbours the ET-FAD whereas the mutated site between domains I and III is the Bf-FAD site, confirming the accepted model by two different tests. 
    more » « less
  5. Nanofiber technology is leading the revolution of wearable technology and provides a unique capability to fabricate smart textiles. With the novel fabrication technique of electrospinning, nanofibers can be fabricated and then manufactured into a durable conductive string for the application of smart textiles. This paper presents an electrospun nanofiber mesh-based (NF-Felt) string electrode with a conducting polymer coating for an electrochemical enzymatic glucose sensor. The surface area of a nanofiber matrix is a key physical property for enhanced glucose oxidase (GOx) enzyme binding for the development of an electrochemical biosensor. A morphological characterization of the NF-Felt string electrode was performed using scanning electron microscopy (SEM) and compared with a commercially available cotton–polyester (Cot-Pol) string coated with the same conducting polymer. The results from stress–strain testing demonstrated high stretchability of the NF-Felt string. Also, the electrochemical characterization results showed that the NF-Felt string electrode was able to detect a glucose concentration in the range between 0.0 mM and 30.0 mM with a sensitivity of 37.4 μA/mM·g and a detection limit of 3.31 mM. Overall, with better electrochemical performance and incredible flexibility, the NF-Felt-based string electrode is potentially more suitable for designing wearable biosensors for the detection of glucose in sweat. 
    more » « less