skip to main content


Title: Cell Aggregation and Aerobic Respiration Are Important for Zymomonas mobilis ZM4 Survival in an Aerobic Minimal Medium
ABSTRACT Zymomonas mobilis produces ethanol from glucose near the theoretical maximum yield, making it a potential alternative to the yeast Saccharomyces cerevisiae for industrial ethanol production. A potentially useful industrial feature is the ability to form multicellular aggregates called flocs, which can settle quickly and exhibit higher resistance to harmful chemicals than single cells. While spontaneous floc-forming Z. mobilis mutants have been described, little is known about the natural conditions that induce Z. mobilis floc formation or about the genetic factors involved. Here we found that wild-type Z. mobilis forms flocs in response to aerobic growth conditions but only in a minimal medium. We identified a cellulose synthase gene cluster and a single diguanylate cyclase that are essential for both floc formation and survival in a minimal aerobic medium. We also found that NADH dehydrogenase 2, a key component of the aerobic respiratory chain, is important for survival in a minimal aerobic medium, providing a physiological role for this enzyme, which has previously been found to be disadvantageous in a rich aerobic medium. Supplementation of the minimal medium with vitamins also promoted survival but did not inhibit floc formation. IMPORTANCE The bacterium Zymomonas mobilis is best known for its anaerobic fermentative lifestyle, in which it converts glucose into ethanol at a yield surpassing that of yeast. However, Z. mobilis also has an aerobic lifestyle, which has confounded researchers with its attributes of poor growth, accumulation of toxic acetic acid and acetaldehyde, and respiratory enzymes that are detrimental for aerobic growth. Here we show that a major Z. mobilis respiratory enzyme and the ability to form multicellular aggregates, called flocs, are important for survival, but only during aerobic growth in a medium containing a minimum set of nutrients required for growth. Supplements, such as vitamins or yeast extract, promote aerobic growth and, in some cases, inhibit floc formation. We propose that Z. mobilis likely requires aerobic respiration and floc formation in order to survive in natural environments that lack protective factors found in supplements such as yeast extract.  more » « less
Award ID(s):
1749489
NSF-PAR ID:
10120637
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied and Environmental Microbiology
Volume:
85
Issue:
10
ISSN:
0099-2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Due to the flocculation process, suspended mud aggregates carried by rivers to the coastal ocean are thought to undergo changes in size and shape in response to environmental drivers such as turbulence, sediment concentration, organic matter (OM), and salinity. Some have assumed that salt is necessary for floc formation, and that mud, therefore, reaches the estuary unflocculated. Yet mud flocs exist in freshwater systems long before the estuarine zone, likely due to the presence of OM acting as a floc‐promoting binder. Therefore, it is important to consider how salinity affects flocculation, if at all, in the presence of OM. Here, we used experiments to examine the flocculation of a natural mud with and without OM. Results showed that the rate of floc growth and equilibrium size both increase with salinity regardless of the presence or absence of OM. However, the response of both to salinity was stronger when OM was present. In deionized water, natural sediment with OM was seen to produce large flocs. However, the size distribution of the suspension tended to be bimodal. With the addition of salt, increasing amounts of unflocculated material became bound within flocs, producing a more unimodal size distribution. Here, the enhancing effects of salt were noticeable at even 0.5 ppt, and increases in salinity past 3–5 ppt only marginally increased the floc growth rate and final size. Data from the experiment were used to develop a salinity‐dependent model to account for changes in floc growth rate and equilibrium size.

     
    more » « less
  2. Summary

    Hopanoids are a class of membrane lipids found in diverse bacterial lineages, but their physiological roles are not well understood. The ethanol fermenterZymomonas mobilisfeatures the highest measured concentration of hopanoids, leading to the hypothesis that these lipids can protect against the solvent toxicity. However, the lack of genetic tools for manipulating hopanoid composition in this bacterium has limited their further functional analysis. Due to the polyploidy (>50 genome copies per cell) ofZ. mobilis, we found that disruptions of essential hopanoid biosynthesis (hpn) genes act as genetic knockdowns, reliably modulating the abundance of different hopanoid species. Using a set ofhpntransposon mutants, we demonstrate that both reduced hopanoid content and modified hopanoid polar head group composition mediate growth and survival in ethanol. In contrast, the amount of hopanoids, but not their head group composition, contributes to fitness at low pH. Spectroscopic analysis of bacterial‐derived liposomes showed that hopanoids protect against several ethanol‐driven phase transitions in membrane structure, including lipid interdigitation and bilayer dissolution. We propose that hopanoids act through a combination of hydrophobic and inter‐lipid hydrogen bonding interactions to stabilize bacterial membranes during solvent stress.

     
    more » « less
  3. Uijttewaal, W. ; Franca, J. ; Valero, M. ; Chavarrias, D. ; Ylla Arbós, V. ; Schielen, C. ; Crosato, A. (Ed.)
    Turbid rivers and density currents carry, distribute, and deposit considerable quantities of fine muddy sediment within rivers, coastal regions, and reservoirs. The muddy sediment in these flows has the potential to flocculate, and knowing and predicting the floc size is critical for predicting mud movement. Flocs are notoriously difficult to measure. Imaging of flocs either within a turbulent suspension or in a separate settling chamber are methods widely considered to be the most accurate ways to measure floc size. The benefit of imaging flocs within the suspension is that the measurements are made within the conditions that gave rise to those particular flocs. The drawback is that it is not possible to make measurements in suspensions with concentrations > 400 mg/L. Transferring a suspension sample to a settling chamber allows for imaging of flocs from suspensions with higher concentration. But, it also removes flocs from the environment in which they were formed, possibly leading to floc growth or breakup. In this study, we compare these two methods to determine whether or not the flocs imaged in a settling chamber are representative of the flocs found in a turbulent suspension. For the experiments, flocs are formed from kaolinite and montmorillonite clay mixed with saltwater at different concentrations and mixing conditions. The suspension is then imaged within the mixing tank, and samples from the mixing tank are imaged in a settling chamber. Results show that flocs imaged in the settling chamber tend to be slightly smaller than those imaged in the mixing chamber, though the differences are minimal if care is taken in the transfer process. Additional trends in the difference between the two methods with turbulent shear rate and concentration are discussed. 
    more » « less
  4. Abstract

    D‐Glucaric acid can be produced as a value‐added chemical from biomass through a de novo pathway inEscherichia coli. However, previous studies have identified pH‐mediated toxicity at product concentrations of 5 g/L and have also found the eukaryotic myo‐inositol oxygenase (MIOX) enzyme to be rate‐limiting. We ported this pathway toSaccaromyces cerevisiae, which is naturally acid‐tolerant and evaluate a codon‐optimized MIOX homologue. We constructed two engineered yeast strains that were distinguished solely by theirMIOXgene – either the previous version fromMus musculusor a homologue fromArabidopsis thalianacodon‐optimized for expression inS. cerevisiae– in order to identify the rate‐limiting steps for D‐glucaric acid production both from a fermentative and non‐fermentative carbon source. myo‐Inositol availability was found to be rate‐limiting from glucose in both strains and demonstrated to be dependent on growth rate, whereas the previously usedM. musculusMIOX activity was found to be rate‐limiting from glycerol. Maximum titers were 0.56 g/L from glucose in batch mode, 0.98 g/L from glucose in fed‐batch mode, and 1.6 g/L from glucose supplemented with myo‐inositol. Future work focusing on the MIOX enzyme, the interplay between growth and production modes, and promoting aerobic respiration should further improve this pathway.

     
    more » « less
  5. Zhou, Ning-Yi (Ed.)
    ABSTRACT We used time-resolved metabolic footprinting, an important technical approach used to monitor changes in extracellular compound concentrations during microbial growth, to study the order of substrate utilization (i.e., substrate preferences) and kinetics of a fast-growing soil isolate, Paraburkholderia sp. strain 1N. The growth of Paraburkholderia sp. 1N was monitored under aerobic conditions in a soil-extracted solubilized organic matter medium, representing a realistic diversity of available substrates and gradient of initial concentrations. We combined multiple analytical approaches to track over 150 compounds in the medium and complemented this with bulk carbon and nitrogen measurements, allowing estimates of carbon use efficiency throughout the growth curve. Targeted methods allowed the quantification of common low-molecular-weight substrates: glucose, 20 amino acids, and 9 organic acids. All targeted compounds were depleted from the medium, and depletion followed a sigmoidal curve where sufficient data were available. Substrates were utilized in at least three distinct temporal clusters as Paraburkholderia sp. 1N produced biomass at a cumulative carbon use efficiency of 0.43. The two substrates with highest initial concentrations, glucose and valine, exhibited longer usage windows, at higher biomass-normalized rates, and later in the growth curve. Contrary to hypotheses based on previous studies, we found no clear relationship between substrate nominal oxidation state of carbon (NOSC) or maximal growth rate and the order of substrate depletion. Under soil solution conditions, the growth of Paraburkholderia sp. 1N induced multiauxic substrate depletion patterns that could not be explained by the traditional paradigm of catabolite repression. IMPORTANCE Exometabolomic footprinting methods have the capability to provide time-resolved observations of the uptake and release of hundreds of compounds during microbial growth. Of particular interest is microbial phenotyping under environmentally relevant soil conditions, consisting of relatively low concentrations and modeling pulse input events. Here, we show that growth of a bacterial soil isolate, Paraburkholderia sp. 1N, on a dilute soil extract resulted in a multiauxic metabolic response, characterized by discrete temporal clusters of substrate depletion and metabolite production. Our data did not support the hypothesis that compounds with lower energy content are used preferentially, as each cluster contained compounds with a range of nominal oxidation states of carbon. These new findings with Paraburkholderia sp. 1N, which belongs to a metabolically diverse genus, provide insights on ecological strategies employed by aerobic heterotrophs competing for low-molecular-weight substrates in soil solution. 
    more » « less