skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cell Aggregation and Aerobic Respiration Are Important for Zymomonas mobilis ZM4 Survival in an Aerobic Minimal Medium
ABSTRACT Zymomonas mobilis produces ethanol from glucose near the theoretical maximum yield, making it a potential alternative to the yeast Saccharomyces cerevisiae for industrial ethanol production. A potentially useful industrial feature is the ability to form multicellular aggregates called flocs, which can settle quickly and exhibit higher resistance to harmful chemicals than single cells. While spontaneous floc-forming Z. mobilis mutants have been described, little is known about the natural conditions that induce Z. mobilis floc formation or about the genetic factors involved. Here we found that wild-type Z. mobilis forms flocs in response to aerobic growth conditions but only in a minimal medium. We identified a cellulose synthase gene cluster and a single diguanylate cyclase that are essential for both floc formation and survival in a minimal aerobic medium. We also found that NADH dehydrogenase 2, a key component of the aerobic respiratory chain, is important for survival in a minimal aerobic medium, providing a physiological role for this enzyme, which has previously been found to be disadvantageous in a rich aerobic medium. Supplementation of the minimal medium with vitamins also promoted survival but did not inhibit floc formation. IMPORTANCE The bacterium Zymomonas mobilis is best known for its anaerobic fermentative lifestyle, in which it converts glucose into ethanol at a yield surpassing that of yeast. However, Z. mobilis also has an aerobic lifestyle, which has confounded researchers with its attributes of poor growth, accumulation of toxic acetic acid and acetaldehyde, and respiratory enzymes that are detrimental for aerobic growth. Here we show that a major Z. mobilis respiratory enzyme and the ability to form multicellular aggregates, called flocs, are important for survival, but only during aerobic growth in a medium containing a minimum set of nutrients required for growth. Supplements, such as vitamins or yeast extract, promote aerobic growth and, in some cases, inhibit floc formation. We propose that Z. mobilis likely requires aerobic respiration and floc formation in order to survive in natural environments that lack protective factors found in supplements such as yeast extract.  more » « less
Award ID(s):
1749489
PAR ID:
10120637
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied and Environmental Microbiology
Volume:
85
Issue:
10
ISSN:
0099-2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mitri, S (Ed.)
    A key step in the evolutionary transition to multicellularity is the origin of multicellular groups as biological individuals capable of adaptation. Comparative work, supported by theory, suggests clonal development should facilitate this transition, although this hypothesis has never been tested in a single model system. We evolved 20 replicate populations of otherwise isogenic clonally reproducing ‘snowflake’ yeast (Δace2/∆ace2) and aggregative ‘floc’ yeast (GAL1p::FLO1 /GAL1p::FLO1) with daily selection for rapid growth in liquid media, which favors faster cell division, followed by selection for rapid sedimentation, which favors larger multicellular groups. While both genotypes adapted to this regime, growing faster and having higher survival during the group-selection phase, there was a stark difference in evolutionary dynamics. Aggregative floc yeast obtained nearly all their increased fitness from faster growth, not improved group survival; indicating that selection acted primarily at the level of cells. In contrast, clonal snowflake yeast mainly benefited from higher group-dependent fitness, indicating a shift in the level of Darwinian individuality from cells to groups. Through genome sequencing and mathematical modeling, we show that the genetic bottlenecks in a clonal life cycle also drive much higher rates of genetic drift—a result with complex implications for this evolutionary transition. Our results highlight the central role that early multicellular life cycles play in the process of multicellular adaptation. 
    more » « less
  2. Abstract Due to the flocculation process, suspended mud aggregates carried by rivers to the coastal ocean are thought to undergo changes in size and shape in response to environmental drivers such as turbulence, sediment concentration, organic matter (OM), and salinity. Some have assumed that salt is necessary for floc formation, and that mud, therefore, reaches the estuary unflocculated. Yet mud flocs exist in freshwater systems long before the estuarine zone, likely due to the presence of OM acting as a floc‐promoting binder. Therefore, it is important to consider how salinity affects flocculation, if at all, in the presence of OM. Here, we used experiments to examine the flocculation of a natural mud with and without OM. Results showed that the rate of floc growth and equilibrium size both increase with salinity regardless of the presence or absence of OM. However, the response of both to salinity was stronger when OM was present. In deionized water, natural sediment with OM was seen to produce large flocs. However, the size distribution of the suspension tended to be bimodal. With the addition of salt, increasing amounts of unflocculated material became bound within flocs, producing a more unimodal size distribution. Here, the enhancing effects of salt were noticeable at even 0.5 ppt, and increases in salinity past 3–5 ppt only marginally increased the floc growth rate and final size. Data from the experiment were used to develop a salinity‐dependent model to account for changes in floc growth rate and equilibrium size. 
    more » « less
  3. Uijttewaal, W.; Franca, J.; Valero, M.; Chavarrias, D.; Ylla Arbós, V.; Schielen, C.; Crosato, A. (Ed.)
    Turbid rivers and density currents carry, distribute, and deposit considerable quantities of fine muddy sediment within rivers, coastal regions, and reservoirs. The muddy sediment in these flows has the potential to flocculate, and knowing and predicting the floc size is critical for predicting mud movement. Flocs are notoriously difficult to measure. Imaging of flocs either within a turbulent suspension or in a separate settling chamber are methods widely considered to be the most accurate ways to measure floc size. The benefit of imaging flocs within the suspension is that the measurements are made within the conditions that gave rise to those particular flocs. The drawback is that it is not possible to make measurements in suspensions with concentrations > 400 mg/L. Transferring a suspension sample to a settling chamber allows for imaging of flocs from suspensions with higher concentration. But, it also removes flocs from the environment in which they were formed, possibly leading to floc growth or breakup. In this study, we compare these two methods to determine whether or not the flocs imaged in a settling chamber are representative of the flocs found in a turbulent suspension. For the experiments, flocs are formed from kaolinite and montmorillonite clay mixed with saltwater at different concentrations and mixing conditions. The suspension is then imaged within the mixing tank, and samples from the mixing tank are imaged in a settling chamber. Results show that flocs imaged in the settling chamber tend to be slightly smaller than those imaged in the mixing chamber, though the differences are minimal if care is taken in the transfer process. Additional trends in the difference between the two methods with turbulent shear rate and concentration are discussed. 
    more » « less
  4. Abstract Natural sediment flocs are fragile, highly irregular, loosely bound aggregates comprising minerogenic and organic material. They contribute a major component of suspended sediment load and are critical for the fate and flux of sediment, carbon and pollutants in aquatic environments. Understanding their behaviour is essential to the sustainable management of waterways, fisheries and marine industries. For several decades, modelling approaches have utilised fractal mathematics and observations of two dimensional (2D) floc size distributions to infer levels of aggregation and predict their behaviour. Whilst this is a computationally simple solution, it is highly unlikely to reflect the complexity of natural sediment flocs and current models predicting fine sediment hydrodynamics are not efficient. Here, we show how new observations of fragile floc structures in three dimensions (3D) demonstrate unequivocally that natural flocs are non-fractal. We propose that floc hierarchy is based on observations of 3D structure and function rather than 2D size distribution. In contrast to fractal theory, our data indicate that flocs possess characteristics of emergent systems including non-linearity and scale-dependent feedbacks. These concepts and new data to quantify floc structures offer the opportunity to explore new emergence-based floc frameworks which better represent natural floc behaviour and could advance our predictive capacity. 
    more » « less
  5. null (Ed.)
    We investigate the dynamics of cohesive particles in homogeneous isotropic turbulence, based on one-way coupled simulations that include Stokes drag, lubrication, cohesive and direct contact forces. We observe a transient flocculation phase, followed by a statistically steady equilibrium phase. We analyse the temporal evolution of floc size and shape due to aggregation, breakage and deformation. Larger turbulent shear and weaker cohesive forces yield smaller elongated flocs. Flocculation proceeds most rapidly when the fluid and particle time scales are balanced and a suitably defined Stokes number is $O(1)$ . During the transient stage, cohesive forces of intermediate strength produce flocs of the largest size, as they are strong enough to cause aggregation, but not so strong as to pull the floc into a compact shape. Small Stokes numbers and weak turbulence delay the onset of the equilibrium stage. During equilibrium, stronger cohesive forces yield flocs of larger size. The equilibrium floc size distribution exhibits a preferred size that depends on the cohesive number. We observe that flocs are generally elongated by turbulent stresses before breakage. Flocs of size close to the Kolmogorov length scale preferentially align themselves with the intermediate strain direction and the vorticity vector. Flocs of smaller size tend to align themselves with the extensional strain direction. More generally, flocs are aligned with the strongest Lagrangian stretching direction. The Kolmogorov scale is seen to limit floc growth. We propose a new flocculation model with a variable fractal dimension that predicts the temporal evolution of the floc size and shape. 
    more » « less