skip to main content


Title: Consensus with Max Registers
We consider the problem of implementing randomized wait-free consensus from max registers under the assumption of an oblivious adversary. We show that max registers solve m-valued consensus for arbitrary m in expected O(log^* n) steps per process, beating the Omega(log m/log log m) lower bound for ordinary registers when m is large and the best previously known O(log log n) upper bound when m is small. A simple max-register implementation based on double-collect snapshots translates this result into an O(n log n) expected step implementation of m-valued consensus from n single-writer registers, improving on the best previously-known bound of O(n log^2 n) for single-writer registers.  more » « less
Award ID(s):
1650596 1637385
NSF-PAR ID:
10120845
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Leibniz international proceedings in informatics
Volume:
146
ISSN:
1868-8969
Page Range / eLocation ID:
1:1-1:9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of simulating a k-valued register in a wait- free manner using binary registers as building blocks, where k > 2. We show that for any simulation using atomic binary base registers to simulate a safe k-valued register in which the read algorithm takes the optimal number of steps (log_2 k), the write algorithm must take at least log k steps in the worst case. A fortiori, the same lower bound applies when the simulated register should be regular. Previously known algorithms show that both these lower bounds are tight. We also show that in order to simulate an atomic k -valued register for two readers, the optimal number of steps for the read algorithm must be strictly larger than log_2 k. 
    more » « less
  2. We study local symmetry breaking problems in the Congest model, focusing on ruling set problems, which generalize the fundamental Maximal Independent Set (MIS) problem. The time (round) complexity of MIS (and ruling sets) have attracted much attention in the Local model. Indeed, recent results (Barenboim et al., FOCS 2012, Ghaffari SODA 2016) for the MIS problem have tried to break the long-standing O(log n)-round "barrier" achieved by Luby's algorithm, but these yield o(log n)-round complexity only when the maximum degree Delta is somewhat small relative to n. More importantly, these results apply only in the Local model. In fact, the best known time bound in the Congest model is still O(log n) (via Luby's algorithm) even for moderately small Delta (i.e., for Delta = Omega(log n) and Delta = o(n)). Furthermore, message complexity has been largely ignored in the context of local symmetry breaking. Luby's algorithm takes O(m) messages on m-edge graphs and this is the best known bound with respect to messages. Our work is motivated by the following central question: can we break the Theta(log n) time complexity barrier and the Theta(m) message complexity barrier in the Congest model for MIS or closely-related symmetry breaking problems? This paper presents progress towards this question for the distributed ruling set problem in the Congest model. A beta-ruling set is an independent set such that every node in the graph is at most beta hops from a node in the independent set. We present the following results: - Time Complexity: We show that we can break the O(log n) "barrier" for 2- and 3-ruling sets. We compute 3-ruling sets in O(log n/log log n) rounds with high probability (whp). More generally we show that 2-ruling sets can be computed in O(log Delta (log n)^(1/2 + epsilon) + log n/log log n) rounds for any epsilon > 0, which is o(log n) for a wide range of Delta values (e.g., Delta = 2^(log n)^(1/2-epsilon)). These are the first 2- and 3-ruling set algorithms to improve over the O(log n)-round complexity of Luby's algorithm in the Congest model. - Message Complexity: We show an Omega(n^2) lower bound on the message complexity of computing an MIS (i.e., 1-ruling set) which holds also for randomized algorithms and present a contrast to this by showing a randomized algorithm for 2-ruling sets that, whp, uses only O(n log^2 n) messages and runs in O(Delta log n) rounds. This is the first message-efficient algorithm known for ruling sets, which has message complexity nearly linear in n (which is optimal up to a polylogarithmic factor). 
    more » « less
  3. We study local symmetry breaking problems in the Congest model, focusing on ruling set problems, which generalize the fundamental Maximal Independent Set (MIS) problem. The time (round) complexity of MIS (and ruling sets) have attracted much attention in the Local model. Indeed, recent results (Barenboim et al., FOCS 2012, Ghaffari SODA 2016) for the MIS problem have tried to break the long-standing O(log n)-round “barrier” achieved by Luby’s algorithm, but these yield o(log n)-round complexity only when the maximum degree  is somewhat small relative to n. More importantly, these results apply only in the Local model. In fact, the best known time bound in the Congest model is still O(log n) (via Luby’s algorithm) even for moderately small  (i.e., for  = (log n) and  = o(n)). Furthermore, message complexity has been largely ignored in the context of local symmetry breaking. Luby’s algorithm takes O(m) messages on m-edge graphs and this is the best known bound with respect to messages. Our work is motivated by the following central question: can we break the (log n) time complexity barrier and the (m) message complexity barrier in the Congest model for MIS or closelyrelated symmetry breaking problems? This paper presents progress towards this question for the distributed ruling set problem in the Congest model. A -ruling set is an independent set such that every node in the graph is at most hops from a node in the independent set. We present the following results: Time Complexity: We show that we can break the O(log n) “barrier” for 2- and 3-ruling sets. We compute 3-ruling sets in O  log n log log n  rounds with high probability (whp). More generally we show that 2-ruling sets can be computed in O  log · (log n)1/2+" + log n log log n  rounds for any " > 0, which is o(log n) for a wide range of  values (e.g.,  = 2(log n)1/2−" ). These are the first 2- and 3-ruling set algorithms to improve over the O(log n)-round complexity of Luby’s algorithm in the Congest model. Message Complexity: We show an (n2) lower bound on the message complexity of computing an MIS (i.e., 1-ruling set) which holds also for randomized algorithms and present a contrast to this by showing a randomized algorithm for 2-ruling sets that, whp, uses only O(n log2 n) messages and runs in O( log n) rounds. This is the first message-efficient algorithm known for ruling sets, which has message complexity nearly linear in n (which is optimal up to a polylogarithmic factor). 
    more » « less
  4. Nikhil, Bansal ; Nagarajan, Viswanath (Ed.)
    We initiate a study of the streaming complexity of constraint satisfaction problems (CSPs) when the constraints arrive in a random order. We show that there exists a CSP, namely Max-DICUT, for which random ordering makes a provable difference. Whereas a 4/9 ≈ 0.445 approximation of DICUT requires space with adversarial ordering, we show that with random ordering of constraints there exists a 0.483-approximation algorithm that only needs O(log n) space. We also give new algorithms for Max-DICUT in variants of the adversarial ordering setting. Specifically, we give a two-pass O(log n) space 0.483-approximation algorithm for general graphs and a single-pass space 0.483-approximation algorithm for bounded-degree graphs. On the negative side, we prove that CSPs where the satisfying assignments of the constraints support a one-wise independent distribution require -space for any non-trivial approximation, even when the constraints are randomly ordered. This was previously known only for adversarially ordered constraints. Extending the results to randomly ordered constraints requires switching the hard instances from a union of random matchings to simple Erdős-Renyi random (hyper)graphs and extending tools that can perform Fourier analysis on such instances. The only CSP to have been considered previously with random ordering is Max-CUT where the ordering is not known to change the approximability. Specifically it is known to be as hard to approximate with random ordering as with adversarial ordering, for space algorithms. Our results show a richer variety of possibilities and motivate further study of CSPs with randomly ordered constraints. 
    more » « less
  5. null (Ed.)
    This paper revisits the k-mismatch shortest unique substring finding problem and demonstrates that a technique recently presented in the context of solving the k-mismatch average common substring problem can be adapted and combined with parts of the existing solution, resulting in a new algorithm which has expected time complexity of O(n log^k n), while maintaining a practical space complexity at O(kn), where n is the string length. When , which is the hard case, our new proposal significantly improves the any-case O(n^2) time complexity of the prior best method for k-mismatch shortest unique substring finding. Experimental study shows that our new algorithm is practical to implement and demonstrates significant improvements in processing time compared to the prior best solution's implementation when k is small relative to n. For example, our method processes a 200 KB sample DNA sequence with k=1 in just 0.18 seconds compared to 174.37 seconds with the prior best solution. Further, it is observed that significant portions of the adapted technique can be executed in parallel, using two different simple concurrency models, resulting in further significant practical performance improvement. As an example, when using 8 cores, the parallel implementations both achieved processing times that are less than 1/4 of the serial implementation's time cost, when processing a 10 MB sample DNA sequence with k=2. In an age where instances with thousands of gigabytes of RAM are readily available for use through Cloud infrastructure providers, it is likely that the trade-off of additional memory usage for significantly improved processing times will be desirable and needed by many users. For example, the best prior solution may spend years to finish a DNA sample of 200MB for any , while this new proposal, using 24 cores, can finish processing a sample of this size with k=1 in 206.376 seconds with a peak memory usage of 46 GB, which is both easily available and affordable on Cloud. It is expected that this new efficient and practical algorithm for k-mismatch shortest unique substring finding will prove useful to those using the measure on long sequences in fields such as computational biology. We also give a theoretical bound that the k-mismatch shortest unique substring finding problem can be solved using O(n log^k n) time and O(n) space, asymptotically much better than the one we implemented, serving as a new discovery of interest. 
    more » « less