skip to main content

Title: An Ultra-Fast and Parallelizable Algorithm for Finding $k$-Mismatch Shortest Unique Substrings
This paper revisits the k-mismatch shortest unique substring finding problem and demonstrates that a technique recently presented in the context of solving the k-mismatch average common substring problem can be adapted and combined with parts of the existing solution, resulting in a new algorithm which has expected time complexity of O(n log^k n), while maintaining a practical space complexity at O(kn), where n is the string length. When , which is the hard case, our new proposal significantly improves the any-case O(n^2) time complexity of the prior best method for k-mismatch shortest unique substring finding. Experimental study shows that our new algorithm is practical to implement and demonstrates significant improvements in processing time compared to the prior best solution's implementation when k is small relative to n. For example, our method processes a 200 KB sample DNA sequence with k=1 in just 0.18 seconds compared to 174.37 seconds with the prior best solution. Further, it is observed that significant portions of the adapted technique can be executed in parallel, using two different simple concurrency models, resulting in further significant practical performance improvement. As an example, when using 8 cores, the parallel implementations both achieved processing times that are less than more » 1/4 of the serial implementation's time cost, when processing a 10 MB sample DNA sequence with k=2. In an age where instances with thousands of gigabytes of RAM are readily available for use through Cloud infrastructure providers, it is likely that the trade-off of additional memory usage for significantly improved processing times will be desirable and needed by many users. For example, the best prior solution may spend years to finish a DNA sample of 200MB for any , while this new proposal, using 24 cores, can finish processing a sample of this size with k=1 in 206.376 seconds with a peak memory usage of 46 GB, which is both easily available and affordable on Cloud. It is expected that this new efficient and practical algorithm for k-mismatch shortest unique substring finding will prove useful to those using the measure on long sequences in fields such as computational biology. We also give a theoretical bound that the k-mismatch shortest unique substring finding problem can be solved using O(n log^k n) time and O(n) space, asymptotically much better than the one we implemented, serving as a new discovery of interest. « less
; ;
Award ID(s):
1704552 1703489
Publication Date:
Journal Name:
IEEE/ACM Transactions on Computational Biology and Bioinformatics
Page Range or eLocation-ID:
1 to 1
Sponsoring Org:
National Science Foundation
More Like this
  1. We extend recent results regarding finding shortest unique substrings (SUSs) to obtain new time-space tradeoffs for this problem and the generalization of finding k-mismatch SUSs. Our new results include the first algorithm for finding a k-mismatch SUS in sublinear space, which we obtain by extending an algorithm by Senanayaka (2019) and combining it with a result on sketching by Gawrychowski and Starikovskaya (2019). We first describe how, given a text T of length n and m words of workspace, with high probability we can find an SUS of length L in O(n(L/m)logL) time using random access to T, or inmore »O(n(L/m)log2(L)loglogσ) time using O((L/m)log2L) sequential passes over T. We then describe how, for constant k, with high probability, we can find a k-mismatch SUS in O(n1+ϵL/m) time using O(nϵL/m) sequential passes over T, again using only m words of workspace. Finally, we also describe a deterministic algorithm that takes O(nτlogσlogn) time to find an SUS using O(n/τ) words of workspace, where τ is a parameter.« less
  2. Memory-hard functions (MHFs) are a key cryptographic primitive underlying the design of moderately expensive password hashing algorithms and egalitarian proofs of work. Over the past few years several increasingly stringent goals for an MHF have been proposed including the requirement that the MHF have high sequential space-time (ST) complexity, parallel space-time complexity, amortized area-time (aAT) complexity and sustained space complexity. Data-Independent Memory Hard Functions (iMHFs) are of special interest in the context of password hashing as they naturally resist side-channel attacks. iMHFs can be specified using a directed acyclic graph (DAG) $G$ with $N=2^n$ nodes and low indegree and themore »complexity of the iMHF can be analyzed using a pebbling game. Recently, Alwen et al. [CCS'17] constructed an DAG called DRSample which has aAT complexity at least $\Omega\left( N^2/\log N\right)$. Asymptotically DRSample outperformed all prior iMHF constructions including Argon2i, winner of the password hashing competition (aAT cost $\mathcal{O}\left(N^{1.767}\right)$), though the constants in these bounds are poorly understood. We show that the the greedy pebbling strategy of Boneh et al. [ASIACRYPT'16] is particularly effective against DRSample e.g., the aAT cost is $\mathcal{O}\left( N^2/\log N\right)$. In fact, our empirical analysis {\em reverses} the prior conclusion of Alwen et al. that DRSample provides stronger resistance to known pebbling attacks for practical values of $N \leq 2^{24}$. We construct a new iMHF candidate (DRSample+BRG) by using the bit-reversal graph to extend DRSample. We then prove that the construction is asymptotically optimal under every MHF criteria, and we empirically demonstrate that our iMHF provides the best resistance to {\em known} pebbling attacks. For example, we show that any parallel pebbling attack either has aAT cost $\omega(N^2)$ or requires at least $\Omega(N)$ steps with $\Omega(N/\log N)$ pebbles on the DAG. This makes our construction the first practical iMHF with a strong sustained space-complexity guarantee and immediately implies that any parallel pebbling has aAT complexity $\Omega(N^2/\log N)$. We also prove that any sequential pebbling (including the greedy pebbling attack) has aAT cost $\Omega\left( N^2\right)$ and, if a plausible conjecture holds, any parallel pebbling has aAT cost $\Omega(N^2 \log \log N/\log N)$ --- the best possible bound for an iMHF. We implement our new iMHF and demonstrate that it is just as fast as Argon2. Along the way we propose a simple modification to the Argon2 round function which increases an attacker's aAT cost by nearly an order of magnitude without increasing running time on a CPU. Finally, we give a pebbling reduction which proves that in the parallel random oracle model (PROM) the cost of evaluating an iMHF like Argon2i or DRSample+BRG is given by the pebbling cost of the underlying DAG. Prior pebbling reductions assumed that the iMHF round function concatenates input labels before hashing and did not apply to practical iMHFs such as Argon2i, DRSample or DRSample+BRG where input labels are instead XORed together.« less
  3. Abstract Background Alignment-free methods for sequence comparisons have become popular in many bioinformatics applications, specifically in the estimation of sequence similarity measures to construct phylogenetic trees. Recently, the average common substring measure, ACS , and its k -mismatch counterpart, ACS k , have been shown to produce results as effective as multiple-sequence alignment based methods for reconstruction of phylogeny trees. Since computing ACS k takes O ( n log k n ) time and hence impractical for large datasets, multiple heuristics that can approximate ACS k have been introduced. Results In this paper, we present a novel linear-time heuristic tomore »approximate ACS k , which is faster than computing the exact ACS k while being closer to the exact ACS k values compared to previously published linear-time greedy heuristics. Using four real datasets, containing both DNA and protein sequences, we evaluate our algorithm in terms of accuracy, runtime and demonstrate its applicability for phylogeny reconstruction. Our algorithm provides better accuracy than previously published heuristic methods, while being comparable in its applications to phylogeny reconstruction. Conclusions Our method produces a better approximation for ACS k and is applicable for the alignment-free comparison of biological sequences at highly competitive speed. The algorithm is implemented in Rust programming language and the source code is available at .« less
  4. Let T[1,n] be a string of length n and T[i,j] be the substring of T starting at position i and ending at position j. A substring T[i,j] of T is a repeat if it occurs more than once in T; otherwise, it is a unique substring of T. Repeats and unique substrings are of great interest in computational biology and information retrieval. Given string T as input, the Shortest Unique Substring problem is to find a shortest substring of T that does not occur elsewhere in T. In this paper, we introduce the range variant of this problem, which wemore »call the Range Shortest Unique Substring problem. The task is to construct a data structure over T answering the following type of online queries efficiently. Given a range [α,β], return a shortest substring T[i,j] of T with exactly one occurrence in [α,β]. We present an O(nlogn)-word data structure with O(logwn) query time, where w=Ω(logn) is the word size. Our construction is based on a non-trivial reduction allowing for us to apply a recently introduced optimal geometric data structure [Chan et al., ICALP 2018]. Additionally, we present an O(n)-word data structure with O(nlogϵn) query time, where ϵ>0 is an arbitrarily small constant. The latter data structure relies heavily on another geometric data structure [Nekrich and Navarro, SWAT 2012].« less
  5. Consider an algorithm performing a computation on a huge random object (for example a random graph or a "long" random walk). Is it necessary to generate the entire object prior to the computation, or is it possible to provide query access to the object and sample it incrementally "on-the-fly" (as requested by the algorithm)? Such an implementation should emulate the random object by answering queries in a manner consistent with an instance of the random object sampled from the true distribution (or close to it). This paradigm is useful when the algorithm is sub-linear and thus, sampling the entire objectmore »up front would ruin its efficiency. Our first set of results focus on undirected graphs with independent edge probabilities, i.e. each edge is chosen as an independent Bernoulli random variable. We provide a general implementation for this model under certain assumptions. Then, we use this to obtain the first efficient local implementations for the Erdös-Rényi G(n,p) model for all values of p, and the Stochastic Block model. As in previous local-access implementations for random graphs, we support Vertex-Pair and Next-Neighbor queries. In addition, we introduce a new Random-Neighbor query. Next, we give the first local-access implementation for All-Neighbors queries in the (sparse and directed) Kleinberg’s Small-World model. Our implementations require no pre-processing time, and answer each query using O(poly(log n)) time, random bits, and additional space. Next, we show how to implement random Catalan objects, specifically focusing on Dyck paths (balanced random walks on the integer line that are always non-negative). Here, we support Height queries to find the location of the walk, and First-Return queries to find the time when the walk returns to a specified location. This in turn can be used to implement Next-Neighbor queries on random rooted ordered trees, and Matching-Bracket queries on random well bracketed expressions (the Dyck language). Finally, we introduce two features to define a new model that: (1) allows multiple independent (and even simultaneous) instantiations of the same implementation, to be consistent with each other without the need for communication, (2) allows us to generate a richer class of random objects that do not have a succinct description. Specifically, we study uniformly random valid q-colorings of an input graph G with maximum degree Δ. This is in contrast to prior work in the area, where the relevant random objects are defined as a distribution with O(1) parameters (for example, n and p in the G(n,p) model). The distribution over valid colorings is instead specified via a "huge" input (the underlying graph G), that is far too large to be read by a sub-linear time algorithm. Instead, our implementation accesses G through local neighborhood probes, and is able to answer queries to the color of any given vertex in sub-linear time for q ≥ 9Δ, in a manner that is consistent with a specific random valid coloring of G. Furthermore, the implementation is memory-less, and can maintain consistency with non-communicating copies of itself.« less