skip to main content


Title: Computational description of key spectroscopic features of zeolite SSZ-13
The catalytic properties of zeolites are intimately linked to the distribution and relative positions of Al atoms and defects in the pore network. However, characterizing this distribution is challenging, in particular when different local Al arrangements are considered. In this contribution we use a combination of first principles calculations and experimental measurements to develop a model for the Al-distribution in protonated SSZ-13. We furthermore apply this model to understand trends in OH-IR, 27 Al-NMR and 29 Si-NMR spectra. We use a Boltzmann distribution to predict the proton position for a given local Al configuration and show that for each configuration several H positions are occupied. Therefore a multi-peak spectrum in OH-IR vibrational spectroscopy is observed for all Al configurations, which is in line with experimentally measured spectra for zeolites at different Si/Al ratios. From NMR spectroscopy we find that the proton position leads to significant shifts in 27 Al-NMR and 29 Si-NMR spectra due to the modification of the local strain, which is lost when a uniform background charge is introduced. These findings are supported by experimental measurements. Finally we discuss the shortcomings of the presented model in terms of unit cell size and the impact of adjacent unit cells.  more » « less
Award ID(s):
1800284
NSF-PAR ID:
10121072
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
21
Issue:
35
ISSN:
1463-9076
Page Range / eLocation ID:
19065 to 19075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Borates and borosilicates are potential candidates for the design and development of glass formulations with important industrial and technological applications. A major challenge that retards the pace of development of borate/borosilicate based glasses using predictive modeling is the lack of reliable computational models to predict the structure‐property relationships in these glasses over a wide compositional space. A major hindrance in this pursuit has been the complexity of boron‐oxygen bonding due to which it has been difficult to develop adequate B–O interatomic potentials. In this article, we have evaluated the performance of three B–O interatomic potential models recently developed by Bauchy et al [J.Non‐Cryst. Solids, 2018, 498, 294–304], Du et al [J. Am. Ceram. Soc.https://doi.org/10.1111/jace.16082] and Edèn et al [Phys. Chem. Chem. Phys., 2018, 20, 8192–8209] aiming to reproduce the short‐to‐medium range structures of sodium borosilicate glasses in the system 25 Na2OxB2O3(75 − x) SiO2(x = 0‐75 mol%). To evaluate the different force fields, we have computed at the density functional theory level the NMR parameters of11B,23Na, and29Si of the models generated with the three potentials and the simulated MAS NMR spectra compared with the experimental counterparts. It was observed that the rigid ionic models proposed by Bauchy and Du can both reliably reproduce the partitioning between BO3and BO4species of the investigated glasses, along with the local environment around sodium in the glass structure. However, they do not accurately reproduce the second coordination sphere of silicon ions and the Si–O–T (T = Si, B) and B‐O‐T distribution angles in the investigated compositional space which strongly affect the NMR parameters and final spectral shape. On the other hand, the core‐shell parameterization model proposed by Edén underestimates the fraction of BO4species of the glass with composition 25Na2O 18.4B2O356.6SiO2but can accurately reproduce the shape of the11B and29Si MAS‐NMR spectra of the glasses investigations due to the narrower B–O–T and Si‐O‐T bond angle distributions. Finally, the effect of the number of boron atoms (also distinguishing the BO3and BO4units) in the second coordination sphere of the network former cations on the NMR parameters have been evaluated.

     
    more » « less
  2. Abstract

    The adsorption and reaction properties of heterogeneous zeolite catalysts (e.g. for catalytic cracking of petroleum, partial oxidation of natural gas) depend strongly on the types and distributions of Al heteroatoms in the aluminosilicate frameworks. The origins of these properties have been challenging to discern, owing in part to the structural complexity of aluminosilicate zeolites. Herein, combined solid‐state NMR and synchrotron X‐ray powder diffraction analyses show the Al atoms locate preferentially in certain framework sites in the zeolite catalyst Al‐SSZ‐70. Through‐covalent‐bond 2D27Al{29Si} J‐correlation NMR spectra allow distinct framework Al sites to be identified and their relative occupancies quantified. The analyses show that 94 % of the Al atoms are located at the surfaces of the large‐pore interlayer channels of Al‐SSZ‐70, while only 6 % are in the sub‐nm intralayer channels. The selective siting of Al atoms accounts for the reaction properties of catalysts derived from SSZ‐70.

     
    more » « less
  3. Abstract

    The adsorption and reaction properties of heterogeneous zeolite catalysts (e.g. for catalytic cracking of petroleum, partial oxidation of natural gas) depend strongly on the types and distributions of Al heteroatoms in the aluminosilicate frameworks. The origins of these properties have been challenging to discern, owing in part to the structural complexity of aluminosilicate zeolites. Herein, combined solid‐state NMR and synchrotron X‐ray powder diffraction analyses show the Al atoms locate preferentially in certain framework sites in the zeolite catalyst Al‐SSZ‐70. Through‐covalent‐bond 2D27Al{29Si} J‐correlation NMR spectra allow distinct framework Al sites to be identified and their relative occupancies quantified. The analyses show that 94 % of the Al atoms are located at the surfaces of the large‐pore interlayer channels of Al‐SSZ‐70, while only 6 % are in the sub‐nm intralayer channels. The selective siting of Al atoms accounts for the reaction properties of catalysts derived from SSZ‐70.

     
    more » « less
  4. Abstract

    Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for obtaining precise information about the local bonding of materials, but difficult to interpret without a well-vetted dataset of reference spectra. The ability to predict NMR parameters and connect them to three-dimensional local environments is critical for understanding more complex, long-range interactions. New computational methods have revealed structural information available from29Si solid-state NMR by generating computed reference spectra for solids. Such predictions are useful for the identification of new silicon-containing compounds, and serve as a starting point for determination of the local environments present in amorphous structures. In this study, we have used 42 silicon sites as a benchmarking set to compare experimentally reported29Si solid-state NMR spectra with those computed by CASTEP-NMR and Vienna Ab Initio Simulation Program (VASP). Data-driven approaches enable us to identify the source of discrepancies across a range of experimental and computational results. The information from NMR (in the form of an NMR tensor) has been validated, and in some cases corrected, in an effort to catalog these for the local spectroscopy database infrastructure (LSDI), where over 10,00029Si NMR tensors for crystalline materials have been computed. Knowledge of specific tensor values can serve as the basis for executing NMR experiments with precision, optimizing conditions to capture the elements accurately. The ability to predict and compare experimental observables from a wide range of structures can aid researchers in their chemical assignments and structure determination, since the computed values enables the extension beyond tables of typical chemical shift (or shielding) ranges.

     
    more » « less
  5. null (Ed.)
    Rechargeable aluminum–graphite batteries are an emerging energy storage technology with great promise: they exhibit high rate performance, cyclability, and a discharge potential of approximately 2 V, while both electrodes are globally abundant, low cost, and inherently safe. The batteries use chloroaluminate-containing electrolytes and store charge in the graphite electrodes when molecular AlCl 4 − anions electrochemically intercalate within them. However, much remains to be understood regarding the ion intercalation mechanism, in part due to challenges associated with characterizing the chloroaluminate anions themselves. Here, we use solid-state 27 Al nuclear magnetic resonance (NMR) spectroscopy to probe the molecular-level electronic and magnetic environments of intercalated chloroaluminate anions at different states-of-charge. The results reveal broad 27 Al NMR signals associated with intercalated AlCl 4 − anions, reflecting high extents of local disorder. The intercalated anions experience a diversity of local environments, many of which are far from the ideal crystalline-like structures often depicted in graphite staging models. Density functional theory (DFT) calculations of the total 27 Al isotropic shifts enable the contributions of chemical shift, ring-current effects, and electric quadrupolar interactions to be disentangled quantitatively. In combination, the solid-state NMR and DFT results reveal the molecular geometries and environments of intercalated AlCl 4 − anions and capture the significant disorder present in intercalated graphite battery electrodes. 
    more » « less