The classic house allocation problem is primarily concerned with finding a matching between a set of agents and a set of houses that guarantees some notion of economic efficiency (e.g. utilitarian welfare). While recent works have shifted focus on achieving fairness (e.g. minimizing the number of envious agents), they often come with notable costs on efficiency notions such as utilitarian or egalitarian welfare. We investigate the trade-offs between these welfare measures and several natural fairness measures that rely on the number of envious agents, the total (aggregate) envy of all agents, and maximum total envy of an agent. In particular, by focusing on envy-free allocations, we first show that, should one exist, finding an envy-free allocation with maximum utilitarian or egalitarian welfare is computationally tractable. We highlight a rather stark contrast between utilitarian and egalitarian welfare by showing that finding utilitarian welfare maximizing allocations that minimize the aforementioned fairness measures can be done in polynomial time while their egalitarian counterparts remain intractable (for the most part) even under binary valuations. We complement our theoretical findings by giving insights into the relationship between the different fairness measures and by conducting empirical analysis.
more »
« less
A comparative study of fairness-enhancing interventions in machine learning
Computers are increasingly used to make decisions that have significant impact on people's lives. Often, these predictions can affect different population subgroups disproportionately. As a result, the issue of fairness has received much recent interest, and a number of fairness-enhanced classifiers have appeared in the literature. This paper seeks to study the following questions: how do these different techniques fundamentally compare to one another, and what accounts for the differences? Specifically, we seek to bring attention to many under-appreciated aspects of such fairness-enhancing interventions that require investigation for these algorithms to receive broad adoption. We present the results of an open benchmark we have developed that lets us compare a number of different algorithms under a variety of fairness measures and existing datasets. We find that although different algorithms tend to prefer specific formulations of fairness preservations, many of these measures strongly correlate with one another. In addition, we find that fairness-preserving algorithms tend to be sensitive to fluctuations in dataset composition (simulated in our benchmark by varying training-test splits) and to different forms of preprocessing, indicating that fairness interventions might be more brittle than previously thought.
more »
« less
- PAR ID:
- 10121132
- Date Published:
- Journal Name:
- Proceedings of the Conference on Fairness, Accountability, and Transparency
- Page Range / eLocation ID:
- 329 to 338
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Roth, A (Ed.)It is well understood that classification algorithms, for example, for deciding on loan applications, cannot be evaluated for fairness without taking context into account. We examine what can be learned from a fairness oracle equipped with an underlying understanding of “true” fairness. The oracle takes as input a (context, classifier) pair satisfying an arbitrary fairness definition, and accepts or rejects the pair according to whether the classifier satisfies the underlying fairness truth. Our principal conceptual result is an extraction procedure that learns the underlying truth; moreover, the procedure can learn an approximation to this truth given access to a weak form of the oracle. Since every “truly fair” classifier induces a coarse metric, in which those receiving the same decision are at distance zero from one another and those receiving different decisions are at distance one, this extraction process provides the basis for ensuring a rough form of metric fairness, also known as individual fairness. Our principal technical result is a higher fidelity extractor under a mild technical constraint on the weak oracle’s conception of fairness. Our framework permits the scenario in which many classifiers, with differing outcomes, may all be considered fair. Our results have implications for interpretablity – a highly desired but poorly defined property of classification systems that endeavors to permit a human arbiter to reject classifiers deemed to be“unfair” or illegitimately derived.more » « less
-
Making fair decisions is crucial to ethically implementing machine learning algorithms in social settings. In this work, we consider the celebrated definition of counterfactual fairness. We begin by showing that an algorithm which satisfies counterfactual fairness also satisfies demographic parity, a far simpler fairness constraint. Similarly, we show that all algorithms satisfying demographic parity can be trivially modified to satisfy counterfactual fairness. Together, our results indicate that counterfactual fairness is basically equivalent to demographic parity, which has important implications for the growing body of work on counterfactual fairness. We then validate our theoretical findings empirically, analyzing three existing algorithms for counterfactual fairness against three simple benchmarks. We find that two simple benchmark algorithms outperform all three existing algorithms---in terms of fairness, accuracy, and efficiency---on several data sets. Our analysis leads us to formalize a concrete fairness goal: to preserve the order of individuals within protected groups. We believe transparency around the ordering of individuals within protected groups makes fair algorithms more trustworthy. By design, the two simple benchmark algorithms satisfy this goal while the existing algorithms do not.more » « less
-
Online matching markets (OMMs) are commonly used in today’s world to pair agents from two parties (whom we will call offline and online agents) for mutual benefit. However, studies have shown that the algorithms making decisions in these OMMs often leave disparities in matching rates, especially for offline agents. In this article, we propose online matching algorithms that optimize for either individual or group-level fairness among offline agents in OMMs. We present two linear-programming (LP) based sampling algorithms, which achieve competitive ratios at least 0.725 for individual fairness maximization and 0.719 for group fairness maximization. We derive further bounds based on fairness parameters, demonstrating conditions under which the competitive ratio can increase to 100%. There are two key ideas helping us break the barrier of 1-1/𝖾~ 63.2% for competitive ratio in online matching. One is boosting , which is to adaptively re-distribute all sampling probabilities among only the available neighbors for every arriving online agent. The other is attenuation , which aims to balance the matching probabilities among offline agents with different mass allocated by the benchmark LP. We conduct extensive numerical experiments and results show that our boosted version of sampling algorithms are not only conceptually easy to implement but also highly effective in practical instances of OMMs where fairness is a concern.more » « less
-
As machine learning (ML) algorithms are used in applications that involve humans, concerns have arisen that these algorithms may be biased against certain social groups. Counterfactual fairness (CF) is a fairness notion proposed in Kusner et al. (2017) that measures the unfairness of ML predictions; it requires that the prediction perceived by an individual in the real world has the same marginal distribution as it would be in a counterfactual world, in which the individual belongs to a different group. Although CF ensures fair ML predictions, it fails to consider the downstream effects of ML predictions on individuals. Since humans are strategic and often adapt their behaviors in response to the ML system, predictions that satisfy CF may not lead to a fair future outcome for the individuals. In this paper, we introduce lookahead counterfactual fairness (LCF), a fairness notion accounting for the downstream effects of ML models which requires the individual future status to be counterfactually fair. We theoretically identify conditions under which LCF can be satisfied and propose an algorithm based on the theorems. We also extend the concept to path-dependent fairness. Experiments on both synthetic and real data validate the proposed methodmore » « less
An official website of the United States government

