skip to main content

This content will become publicly available on August 26, 2023

Title: Highly scalable maximum likelihood and conjugate Bayesian inference for ERGMs on graph sets with equivalent vertices
The exponential family random graph modeling (ERGM) framework provides a highly flexible approach for the statistical analysis of networks (i.e., graphs). As ERGMs with dyadic dependence involve normalizing factors that are extremely costly to compute, practical strategies for ERGMs inference generally employ a variety of approximations or other workarounds. Markov Chain Monte Carlo maximum likelihood (MCMC MLE) provides a powerful tool to approximate the maximum likelihood estimator (MLE) of ERGM parameters, and is generally feasible for typical models on single networks with as many as a few thousand nodes. MCMC-based algorithms for Bayesian analysis are more expensive, and high-quality answers are challenging to obtain on large graphs. For both strategies, extension to the pooled case—in which we observe multiple networks from a common generative process—adds further computational cost, with both time and memory scaling linearly in the number of graphs. This becomes prohibitive for large networks, or cases in which large numbers of graph observations are available. Here, we exploit some basic properties of the discrete exponential families to develop an approach for ERGM inference in the pooled case that (where applicable) allows an arbitrarily large number of graph observations to be fit at no additional computational cost beyond preprocessing more » the data itself. Moreover, a variant of our approach can also be used to perform Bayesian inference under conjugate priors, again with no additional computational cost in the estimation phase. The latter can be employed either for single graph observations, or for observations from graph sets. As we show, the conjugate prior is easily specified, and is well-suited to applications such as regularization. Simulation studies show that the pooled method leads to estimates with good frequentist properties, and posterior estimates under the conjugate prior are well-behaved. We demonstrate the usefulness of our approach with applications to pooled analysis of brain functional connectivity networks and to replicated x-ray crystal structures of hen egg-white lysozyme. « less
Authors:
;
Editors:
De Vico Fallani, Fabrizio
Award ID(s):
1826589 1361425
Publication Date:
NSF-PAR ID:
10376706
Journal Name:
PLOS ONE
Volume:
17
Issue:
8
Page Range or eLocation-ID:
e0273039
ISSN:
1932-6203
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Exponential random graph models, or ERGMs, are a flexible and general class of models for modeling dependent data. While the early literature has shown them to be powerful in capturing many network features of interest, recent work highlights difficulties related to the models’ ill behavior, such as most of the probability mass being concentrated on a very small subset of the parameter space. This behavior limits both the applicability of an ERGM as a model for real data and inference and parameter estimation via the usual Markov chain Monte Carlo algorithms. To address this problem, we propose a new exponential family of models for random graphs that build on the standard ERGM framework. Specifically, we solve the problem of computational intractability and “degenerate” model behavior by an interpretable support restriction. We introduce a new parameter based on the graph-theoretic notion of degeneracy, a measure of sparsity whose value is commonly low in real-world networks. The new model family is supported on the sample space of graphs with bounded degeneracy and is called degeneracy-restricted ERGMs, or DERGMs for short. Since DERGMs generalize ERGMs—the latter is obtained from the former by setting the degeneracy parameter to be maximal—they inherit good theoreticalmore »properties, while at the same time place their mass more uniformly over realistic graphs. The support restriction allows the use of new (and fast) Monte Carlo methods for inference, thus making the models scalable and computationally tractable. We study various theoretical properties of DERGMs and illustrate how the support restriction improves the model behavior. We also present a fast Monte Carlo algorithm for parameter estimation that avoids many issues faced by Markov Chain Monte Carlo algorithms used for inference in ERGMs.« less
  2. Many social networks contain sensitive relational information. One approach to protect the sensitive relational information while offering flexibility for social network research and analysis is to release synthetic social networks at a pre-specified privacy risk level, given the original observed network. We propose the DP-ERGM procedure that synthesizes networks that satisfy the differential privacy (DP) via the exponential random graph model (EGRM). We apply DP-ERGM to a college student friendship network and compare its original network information preservation in the generated private networks with two other approaches: differentially private DyadWise Randomized Response (DWRR) and Sanitization of the Conditional probability of Edge given Attribute classes (SCEA). The results suggest that DP-EGRM preserves the original information significantly better than DWRR and SCEA in both network statistics and inferences from ERGMs and latent space models. In addition, DP-ERGM satisfies the node DP, a stronger notion of privacy than the edge DP that DWRR and SCEA satisfy.
  3. Koyejo, Sanmi ; Mohamed, Shakir (Ed.)
    Differentially private mechanisms protect privacy by introducing additional randomness into the data. Restricting access to only the privatized data makes it challenging to perform valid statistical inference on parameters underlying the confidential data. Specifically, the likelihood function of the privatized data requires integrating over the large space of confidential databases and is typically intractable. For Bayesian analysis, this results in a posterior distribution that is doubly intractable, rendering traditional MCMC techniques inapplicable. We propose an MCMC framework to perform Bayesian inference from the privatized data, which is applicable to a wide range of statistical models and privacy mechanisms. Our MCMC algorithm augments the model parameters with the unobserved confidential data, and alternately updates each one conditional on the other. For the potentially challenging step of updating the confidential data, we propose a generic approach that exploits the privacy guarantee of the mechanism to ensure efficiency. In particular, we give results on the computational complexity, acceptance rate, and mixing properties of our MCMC. We illustrate the efficacy and applicability of our methods on a na\"ive-Bayes log-linear model as well as on a linear regression model.
  4. Motivated by modern applications in which one constructs graphical models based on a very large number of features, this paper introduces a new class of cluster-based graphical models, in which variable clustering is applied as an initial step for reducing the dimension of the feature space. We employ model assisted clustering, in which the clusters contain features that are similar to the same unobserved latent variable. Two different cluster-based Gaussian graphical models are considered: the latent variable graph, corresponding to the graphical model associated with the unobserved latent variables, and the cluster-average graph, corresponding to the vector of features averaged over clusters. Our study reveals that likelihood based inference for the latent graph, not analyzed previously, is analytically intractable. Our main contribution is the development and analysis of alternative estimation and inference strategies, for the precision matrix of an unobservable latent vector Z. We replace the likelihood of the data by an appropriate class of empirical risk functions, that can be specialized to the latent graphical model and to the simpler, but under-analyzed, cluster-average graphical model. The estimators thus derived can be used for inference on the graph structure, for instance on edge strength or pattern recovery. Inference is basedmore »on the asymptotic limits of the entry-wise estimates of the precision matrices associated with the conditional independence graphs under consideration. While taking the uncertainty induced by the clustering step into account, we establish Berry-Esseen central limit theorems for the proposed estimators. It is noteworthy that, although the clusters are estimated adaptively from the data, the central limit theorems regarding the entries of the estimated graphs are proved under the same conditions one would use if the clusters were known in advance. As an illustration of the usage of these newly developed inferential tools, we show that they can be reliably used for recovery of the sparsity pattern of the graphs we study, under FDR control, which is verified via simulation studies and an fMRI data analysis. These experimental results confirm the theoretically established difference between the two graph structures. Furthermore, the data analysis suggests that the latent variable graph, corresponding to the unobserved cluster centers, can help provide more insight into the understanding of the brain connectivity networks relative to the simpler, average-based, graph.« less
  5. A current challenge for data management systems is to support the construction and maintenance of machine learning models over data that is large, multi-dimensional, and evolving. While systems that could support these tasks are emerging, the need to scale to distributed, streaming data requires new models and algorithms. In this setting, as well as computational scalability and model accuracy, we also need to minimize the amount of communication between distributed processors, which is the chief component of latency. We study Bayesian Networks, the workhorse of graphical models, and present a communication-efficient method for continuously learning and maintaining a Bayesian network model over data that is arriving as a distributed stream partitioned across multiple processors. We show a strategy for maintaining model parameters that leads to an exponential reduction in communication when compared with baseline approaches to maintain the exact MLE (maximum likelihood estimation). Meanwhile, our strategy provides similar prediction errors for the target distribution and for classification tasks.