Coral disease has progressively become one of the most pressing issues affecting coral reef survival. In the last 50 years, several reefs throughout the Caribbean have been severely impacted by increased frequency and intensity of disease outbreaks leading to coral death. A recent example of this is stony coral tissue loss disease which has quickly spread throughout the Caribbean, devastating coral reef ecosystems. Emerging from these disease outbreaks has been a coordinated research response that often integrates ‘omics techniques to better understand the coral immune system. ‘Omics techniques encompass a wide range of technologies used to identify large scale gene, DNA, metabolite, and protein expression. In this review, we discuss what is known about coral immunity and coral disease from an ‘omics perspective. We reflect on the development of biomarkers and discuss ways in which coral disease experiments to test immunity can be improved. Lastly, we consider how existing data can be better leveraged to combat future coral disease outbreaks.
more »
« less
Proteomic Investigation of a Diseased Gorgonian Coral Indicates Disruption of Essential Cell Function and Investment in Inflammatory and Other Immune Processes
Abstract As scleractinian coral cover declines in the face of increased frequency in disease outbreaks, future reefs may become dominated by octocorals. Understanding octocoral disease responses and consequences is therefore necessary if we are to gain insight into the future of ecosystem services provided by coral reefs. In Florida, populations of the octocoral Eunicea calyculata infected with Eunicea black disease (EBD) were observed in the field in the fall of 2011. This disease was recognized by a stark, black pigmentation caused by heavy melanization. Histological preparations of E. calyculata infected with EBD demonstrated granular amoebocyte (GA) mobilization, melanin granules in much of the GA population, and the presence of fungal hyphae penetrating coral tissue. Previous transcriptomic analysis also identified immune trade-offs evidenced by increased immune investment at the expense of growth. Our investigation utilized proteogenomic techniques to reveal decreased investment in general cell signaling while increasing energy production for immune responses. Inflammation was also prominent in diseased E. calyculata and sheds light on factors driving the extreme phenotype observed with EBD. With disease outbreaks continuing to increase in frequency, our results highlight new targets within the cnidarian immune system and provide a framework for understanding transcriptomics in the context of an organismal disease phenotype and its protein expression.
more »
« less
- PAR ID:
- 10121504
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- Volume:
- 59
- Issue:
- 4
- ISSN:
- 1540-7063
- Page Range / eLocation ID:
- p. 830-844
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract As the major form of coral reef regime shift, stony coral to macroalgal transitions have received considerable attention. In the Caribbean, however, regime shifts in which scleractinian corals are replaced by octocoral assemblages hold potential for maintaining reef associated communities. Accordingly, forecasting the resilience of octocoral assemblages to future disturbance regimes is necessary to understand these assemblages' capacity to maintain reef biodiversity. We parameterised integral projection models quantifying the survival, growth, and recruitment of the octocorals,Antillogorgia americana,Gorgonia ventalina, andEunicea flexuosa,in St John, US Virgin Islands, before, during, and after severe hurricane disturbance. Using these models, we forecast the density of populations of each species under varying future hurricane regimes. We demonstrate that although hurricanes reduce population growth,A. americana,G. ventalina, andE. flexuosaeach display a capacity for quick recovery following storm disturbance. Despite this recovery potential, we illustrate how the population dynamics of each species correspond with a longer-term decline in their population densities. Despite their resilience to periodic physical disturbance events, ongoing global change jeopardises the future viability of octocoral assemblages.more » « less
-
Coral reefs, one of the world's most productive and diverse ecosystems, are currently threatened by a variety of stressors that result in increased prevalence of both bleaching and disease. Therefore, understanding the molecular mechanisms involved in these responses is critical to mitigate future damage to the reefs. One group of genes that is potentially involved in cnidarian immunity and symbiosis is GTPases of Immunity Associated Proteins (GIMAP). In vertebrates, this family of proteins is involved in regulating the fate of developing lymphocytes and interacts with proteins involved in apoptosis and autophagy. Since apoptosis, autophagy, and immunity have previously shown to be involved in cnidarian symbiosis and disease, the goal of this research was to determine the role of cnidarian GIMAPs in these processes using the anemone Exaiptasia pallida. To do so, GIMAP genes were characterized in the E. pallida genome and changes in gene expression were measured using qPCR in response to chemical induction of apoptosis, autophagy, and treatment with the immune stimulant lipopolysaccharide (LPS) in both aposymbiotic and symbiotic anemones. The results revealed four GIMAP-like genes in E. pallida, referred to as Ep_GIMAPs. Induction of apoptosis and autophagy resulted in a general downregulation of Ep_GIMAPs, but no significant changes were observed in response to LPS treatment. This indicates Ep_GIMAPs may be involved in regulation of apoptosis and autophagy, and therefore could play a role in cnidarian-dinoflagellate symbiosis. Overall, these results increase our knowledge on the function of GIMAPs in a basal metazoan.more » « less
-
Mapder, Tarunendu (Ed.)Reef-building corals contain a complex consortium of organisms, a holobiont, which responds dynamically to disease, making pathogen identification difficult. While coral transcriptomics and microbiome communities have previously been characterized, similarities and differences in their responses to different pathogenic sources has not yet been assessed. In this study, we inoculated four genets of the Caribbean branching coral Acropora palmata with a known coral pathogen ( Serratia marcescens ) and white band disease. We then characterized the coral’s transcriptomic and prokaryotic microbiomes’ (prokaryiome) responses to the disease inoculations, as well as how these responses were affected by a short-term heat stress prior to disease inoculation. We found strong commonality in both the transcriptomic and prokaryiomes responses, regardless of disease inoculation. Differences, however, were observed between inoculated corals that either remained healthy or developed active disease signs. Transcriptomic co-expression analysis identified that corals inoculated with disease increased gene expression of immune, wound healing, and fatty acid metabolic processes. Co-abundance analysis of the prokaryiome identified sets of both healthy-and-disease-state bacteria, while co-expression analysis of the prokaryiomes’ inferred metagenomic function revealed infected corals’ prokaryiomes shifted from free-living to biofilm states, as well as increasing metabolic processes. The short-term heat stress did not increase disease susceptibility for any of the four genets with any of the disease inoculations, and there was only a weak effect captured in the coral hosts’ transcriptomic and prokaryiomes response. Genet identity, however, was a major driver of the transcriptomic variance, primarily due to differences in baseline immune gene expression. Despite genotypic differences in baseline gene expression, we have identified a common response for components of the coral holobiont to different disease inoculations. This work has identified genes and prokaryiome members that can be focused on for future coral disease work, specifically, putative disease diagnostic tools.more » « less
-
Abstract Disease outbreaks have caused significant declines of keystone coral species. While forecasting disease outbreaks based on environmental factors has progressed, we still lack a comparative understanding of susceptibility among coral species that would help predict disease impacts on coral communities. The present study compared the phenotypic and microbial responses of seven Caribbean coral species with diverse life-history strategies after exposure to white plague disease. Disease incidence and lesion progression rates were evaluated over a seven-day exposure. Coral microbiomes were sampled after lesion appearance or at the end of the experiment if no disease signs appeared. A spectrum of disease susceptibility was observed among the coral species that corresponded to microbial dysbiosis. This dysbiosis promotes greater disease susceptiblity in coral perhaps through different tolerant thresholds for change in the microbiome. The different disease susceptibility can affect coral’s ecological function and ultimately shape reef ecosystems.more » « less
An official website of the United States government
