skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal strategies for patrolling fences
A classical multi-agent fence patrolling problem asks: What is the maximum length L of a line fence that k agents with maximum speeds v_1,..., v_k can patrol if each point on the line needs to be visited at least once every unit of time. It is easy to see that L = alpha sum_{i=1}^k v_i for some efficiency alpha in [1/2,1). After a series of works [Czyzowicz et al., 2011; Dumitrescu et al., 2014; Kawamura and Kobayashi, 2015; Kawamura and Soejima, 2015] giving better and better efficiencies, it was conjectured by Kawamura and Soejima [Kawamura and Soejima, 2015] that the best possible efficiency approaches 2/3. No upper bounds on the efficiency below 1 were known. We prove the first such upper bounds and tightly bound the optimal efficiency in terms of the minimum speed ratio s = {v_{max}}/{v_{min}} and the number of agents k. Our bounds of alpha <= 1/{1 + 1/s} and alpha <= 1 - 1/(sqrt{k)+1} imply that in order to achieve efficiency 1 - epsilon, at least k >= Omega(epsilon^{-2}) agents with a speed ratio of s >= Omega(epsilon^{-1}) are necessary. Guided by our upper bounds, we construct a scheme whose efficiency approaches 1, disproving the conjecture stated above. Our scheme asymptotically matches our upper bounds in terms of the maximal speed difference and the number of agents used. A variation of the fence patrolling problem considers a circular fence instead and asks for its circumference to be maximized. We consider the unidirectional case of this variation, where all agents are only allowed to move in one direction, say clockwise. At first, a strategy yielding L = max_{r in [k]} r * v_r where v_1 >= v_2 >= ... >= v_k was conjectured to be optimal by Czyzowicz et al. [Czyzowicz et al., 2011] This was proven not to be the case by giving constructions for only specific numbers of agents with marginal improvements of L. We give a general construction that yields L = 1/{33 log_e log_2(k)} sum_{i=1}^k v_i for any set of agents, which in particular for the case 1, 1/2, ..., 1/k diverges as k - > infty, thus resolving a conjecture by Kawamura and Soejima [Kawamura and Soejima, 2015] affirmatively.  more » « less
Award ID(s):
1910588 1814603 1750808 1618280
PAR ID:
10121506
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Colloquium on Automata, Languages and Programming
Volume:
132
Page Range / eLocation ID:
1868-8969
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)
    In [Saunderson, 2011; Saunderson et al., 2013], Saunderson, Parrilo, and Willsky asked the following elegant geometric question: what is the largest m = m(d) such that there is an ellipsoid in ℝ^d that passes through v_1, v_2, …, v_m with high probability when the v_is are chosen independently from the standard Gaussian distribution N(0,I_d)? The existence of such an ellipsoid is equivalent to the existence of a positive semidefinite matrix X such that v_i^⊤ X v_i = 1 for every 1 ⩽ i ⩽ m - a natural example of a random semidefinite program. SPW conjectured that m = (1-o(1)) d²/4 with high probability. Very recently, Potechin, Turner, Venkat and Wein [Potechin et al., 2022] and Kane and Diakonikolas [Kane and Diakonikolas, 2022] proved that m ≳ d²/polylog(d) via a certain natural, explicit construction. In this work, we give a substantially tighter analysis of their construction to prove that m ≳ d²/C for an absolute constant C > 0. This resolves one direction of the SPW conjecture up to a constant. Our analysis proceeds via the method of Graphical Matrix Decomposition that has recently been used to analyze correlated random matrices arising in various areas [Barak et al., 2019; Bafna et al., 2022]. Our key new technical tool is a refined method to prove singular value upper bounds on certain correlated random matrices that are tight up to absolute dimension-independent constants. In contrast, all previous methods that analyze such matrices lose logarithmic factors in the dimension. 
    more » « less
  2. Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)
    We give the first almost-linear time algorithm for computing the maximal k-edge-connected subgraphs of an undirected unweighted graph for any constant k. More specifically, given an n-vertex m-edge graph G = (V,E) and a number k = log^o(1) n, we can deterministically compute in O(m+n^{1+o(1)}) time the unique vertex partition {V_1,… ,V_z} such that, for every i, V_i induces a k-edge-connected subgraph while every superset V'_i ⊃ V_{i} does not. Previous algorithms with linear time work only when k ≤ 2 [Tarjan SICOMP'72], otherwise they all require Ω(m+n√n) time even when k = 3 [Chechik et al. SODA'17; Forster et al. SODA'20]. Our algorithm also extends to the decremental graph setting; we can deterministically maintain the maximal k-edge-connected subgraphs of a graph undergoing edge deletions in m^{1+o(1)} total update time. Our key idea is a reduction to the dynamic algorithm supporting pairwise k-edge-connectivity queries [Jin and Sun FOCS'20]. 
    more » « less
  3. In [Saunderson, 2011; Saunderson et al., 2013], Saunderson, Parrilo, and Willsky asked the following elegant geometric question: what is the largest m = m(d) such that there is an ellipsoid in ℝ^d that passes through v_1, v_2, …, v_m with high probability when the v_is are chosen independently from the standard Gaussian distribution N(0,I_d)? The existence of such an ellipsoid is equivalent to the existence of a positive semidefinite matrix X such that v_i^⊤ X v_i = 1 for every 1 ⩽ i ⩽ m - a natural example of a random semidefinite program. SPW conjectured that m = (1-o(1)) d²/4 with high probability. Very recently, Potechin, Turner, Venkat and Wein [Potechin et al., 2022] and Kane and Diakonikolas [Kane and Diakonikolas, 2022] proved that m ≳ d²/log^O(1) d via a certain natural, explicit construction. In this work, we give a substantially tighter analysis of their construction to prove that m ≳ d²/C for an absolute constant C > 0. This resolves one direction of the SPW conjecture up to a constant. Our analysis proceeds via the method of Graphical Matrix Decomposition that has recently been used to analyze correlated random matrices arising in various areas [Barak et al., 2019; Bafna et al., 2022]. Our key new technical tool is a refined method to prove singular value upper bounds on certain correlated random matrices that are tight up to absolute dimension-independent constants. In contrast, all previous methods that analyze such matrices lose logarithmic factors in the dimension. 
    more » « less
  4. One of the most intruguing conjectures in extremal graph theory is the conjecture of Erdős and Sós from 1962, which asserts that every $$n$$-vertex graph with more than $$\frac{k-1}{2}n$$ edges contains any $$k$$-edge tree as a subgraph. Kalai proposed a generalization of this conjecture to hypergraphs. To explain the generalization, we need to define the concept of a tight tree in an $$r$$-uniform hypergraph, i.e., a hypergraph where each edge contains $$r$$ vertices. A tight tree is an $$r$$-uniform hypergraph such that there is an ordering $$v_1,\ldots,v_n$$ of its its vertices with the following property: the vertices $$v_1,\ldots,v_r$$ form an edge and for every $i>r$, there is a single edge $$e$$ containing the vertex $$v_i$$ and $r-1$ of the vertices $$v_1,\ldots,v_{i-1}$$, and $$e\setminus\{v_i\}$$ is a subset of one of the edges consisting only of vertices from $$v_1,\ldots,v_{i-1}$$. The conjecture of Kalai asserts that every $$n$$-vertex $$r$$-uniform hypergraph with more than $$\frac{k-1}{r}\binom{n}{r-1}$$ edges contains every $$k$$-edge tight tree as a subhypergraph. The recent breakthrough results on the existence of combinatorial designs by Keevash and by Glock, Kühn, Lo and Osthus show that this conjecture, if true, would be tight for infinitely many values of $$n$$ for every $$r$$ and $$k$$.The article deals with the special case of the conjecture when the sought tight tree is a path, i.e., the edges are the $$r$$-tuples of consecutive vertices in the above ordering. The case $r=2$ is the famous Erdős-Gallai theorem on the existence of paths in graphs. The case $r=3$ and $k=4$ follows from an earlier work of the authors on the conjecture of Kalai. The main result of the article is the first non-trivial upper bound valid for all $$r$$ and $$k$$. The proof is based on techniques developed for a closely related problem where a hypergraph comes with a geometric structure: the vertices are points in the plane in a strictly convex position and the sought path has to zigzag beetwen the vertices. 
    more » « less
  5. We study lower bounds for the problem of approximating a one dimensional distribution given (noisy) measurements of its moments. We show that there are distributions on $[-1,1]$ that cannot be approximated to accuracy $$\epsilon$$ in Wasserstein-1 distance even if we know \emph{all} of their moments to multiplicative accuracy $$(1\pm2^{-\Omega(1/\epsilon)})$$; this result matches an upper bound of Kong and Valiant [Annals of Statistics, 2017]. To obtain our result, we provide a hard instance involving distributions induced by the eigenvalue spectra of carefully constructed graph adjacency matrices. Efficiently approximating such spectra in Wasserstein-1 distance is a well-studied algorithmic problem, and a recent result of Cohen-Steiner et al. [KDD 2018] gives a method based on accurately approximating spectral moments using $$2^{O(1/\epsilon)}$$ random walks initiated at uniformly random nodes in the graph.As a strengthening of our main result, we show that improving the dependence on $$1/\epsilon$$ in this result would require a new algorithmic approach. Specifically, no algorithm can compute an $$\epsilon$$-accurate approximation to the spectrum of a normalized graph adjacency matrix with constant probability, even when given the transcript of $$2^{\Omega(1/\epsilon)}$$ random walks of length $$2^{\Omega(1/\epsilon)}$$ started at random nodes. 
    more » « less