Real-time controllers must satisfy strict safety requirements. Recently, Control Barrier Functions (CBFs) have been proposed that guarantee safety by ensuring that a suitablydefined barrier function remains bounded for all time. The CBF method, however, has only been developed for deterministic systems and systems with worst-case disturbances and uncertainties. In this paper, we develop a CBF framework for safety of stochastic systems. We consider complete information systems, in which the controller has access to the exact system state, as well as incomplete information systems where the state must be reconstructed from noisy measurements. In the complete information case, we formulate a notion of barrier functions that leads to sufficient conditions for safety with probability 1. In the incomplete information case, we formulate barrier functions that take an estimate from an extended Kalman filter as input, and derive bounds on the probability of safety as a function of the asymptotic error in the filter. We show that, in both cases, the sufficient conditions for safety can be mapped to linear constraints on the control input at each time, enabling the development of tractable optimization-based controllers that guarantee safety, performance, and stability. Our approach is evaluated via simulation study on an adaptive cruise control case study.
more »
« less
Safety-Aware Reinforcement Learning Framework with an Actor-Critic-Barrier Structure
This paper considers the control problem with constraints on full-state and control input simultaneously. First, a novel barrier function based system transformation approach is developed to guarantee the full-state constraints. To deal with the input saturation, the hyperbolic-type penalty function is imposed on the control input. The actor-critic based reinforcement learning technique is combined with the barrier transformation to learn the optimal control policy that considers both the full-state constraints and input saturations. To illustrate the efficacy, a numeric simulation is implemented in the end.
more »
« less
- Award ID(s):
- 1851588
- PAR ID:
- 10121583
- Date Published:
- Journal Name:
- Proc. 2019 American Control Conference (ACC)
- Page Range / eLocation ID:
- 2352-2358
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The objective of this research is to enable safety‐critical systems to simultaneously learn and execute optimal control policies in a safe manner to achieve complex autonomy. Learning optimal policies via trial and error, that is, traditional reinforcement learning, is difficult to implement in safety‐critical systems, particularly when task restarts are unavailable. Safe model‐based reinforcement learning techniques based on a barrier transformation have recently been developed to address this problem. However, these methods rely on full‐state feedback, limiting their usability in a real‐world environment. In this work, an output‐feedback safe model‐based reinforcement learning technique based on a novel barrier‐aware dynamic state estimator has been designed to address this issue. The developed approach facilitates simultaneous learning and execution of safe control policies for safety‐critical linear systems. Simulation results indicate that barrier transformation is an effective approach to achieve online reinforcement learning in safety‐critical systems using output feedback.more » « less
-
Control barrier functions are mathematical constructs used to guarantee safety for robotic systems. When integrated as constraints in a quadratic programming optimization problem, instantaneous control synthesis with real-time performance demands can be achieved for robotics applications. Prevailing use has assumed full knowledge of the safety barrier functions, however there are cases where the safe regions must be estimated online from sensor measurements. In these cases, the corresponding barrier function must be synthesized online. This paper describes a learning framework for estimating control barrier functions from sensor data. Doing so affords system operation in unknown state space regions without compromising safety. Here, a support vector machine classifier provides the barrier function specification as determined by sets of safe and unsafe states obtained from sensor measurements. Theoretical safety guarantees are provided. Experimental ROS-based simulation results for an omnidirectional robot equipped with LiDAR demonstrate safe operation.more » « less
-
Summary This article presents a novel actor‐critic‐barrier structure for the multiplayer safety‐critical systems. Non‐zero‐sum (NZS) games with full‐state constraints are first transformed into unconstrained NZS games using a barrier function. The barrier function is capable of dealing with both symmetric and asymmetric constraints on the state. It is shown that the Nash equilibrium of the unconstrained NZS guarantees to stabilize the original multiplayer system. The barrier function is combined with an actor‐critic structure to learn the Nash equilibrium solution in an online fashion. It is shown that integrating the barrier function with the actor‐critic structure guarantees that the constraints will not be violated during learning. Boundedness and stability of the closed‐loop signals are analyzed. The efficacy of the presented approach is finally demonstrated by using a simulation example.more » « less
-
In this study, we address the problem of safe control in systems subject to state and input constraints by integrating the Control Barrier Function (CBF) into the Model Predictive Control (MPC) formulation. While CBF offers a conservative policy and traditional MPC lacks the safety guarantee beyond the finite horizon, the proposed scheme takes advantage of both MPC and CBF approaches to provide a guaranteed safe control policy with reduced conservatism and a shortened horizon. The proposed methodology leverages the sum-of-square (SOS) technique to construct CBFs that make forward invariant safe sets in the state space that are then used as a terminal constraint on the last predicted state. CBF invariant sets cover the state space around system fixed points. These islands of forward invariant CBF sets will be connected to each other using MPC. To do this, we proposed a technique to handle the MPC optimization problem subject to the combination of intersections and union of constraints. Our approach, termed Model Predictive Control Barrier Functions (MPCBF), is validated using numerical examples to demonstrate its efficacy, showing improved performance compared to classical MPC and CBF.more » « less
An official website of the United States government

