skip to main content

Title: Control Barrier Functions for Complete and Incomplete Information Stochastic Systems
Real-time controllers must satisfy strict safety requirements. Recently, Control Barrier Functions (CBFs) have been proposed that guarantee safety by ensuring that a suitablydefined barrier function remains bounded for all time. The CBF method, however, has only been developed for deterministic systems and systems with worst-case disturbances and uncertainties. In this paper, we develop a CBF framework for safety of stochastic systems. We consider complete information systems, in which the controller has access to the exact system state, as well as incomplete information systems where the state must be reconstructed from noisy measurements. In the complete information case, we formulate a notion of barrier functions that leads to sufficient conditions for safety with probability 1. In the incomplete information case, we formulate barrier functions that take an estimate from an extended Kalman filter as input, and derive bounds on the probability of safety as a function of the asymptotic error in the filter. We show that, in both cases, the sufficient conditions for safety can be mapped to linear constraints on the control input at each time, enabling the development of tractable optimization-based controllers that guarantee safety, performance, and stability. Our approach is evaluated via simulation study on an adaptive cruise control case study.
Authors:
Award ID(s):
1656981
Publication Date:
NSF-PAR ID:
10131729
Journal Name:
American Control Conference (ACC)
Page Range or eLocation-ID:
2928-2935
Sponsoring Org:
National Science Foundation
More Like this
  1. This work provides a decentralized approach to safety by combining tools from control barrier functions (CBF) and nonlinear model predictive control (NMPC). It is shown how leveraging backup safety controllers allows for the robust implementation of CBF over the NMPC computation horizon, ensuring safety in nonlinear systems with actuation constraints. A leader-follower approach to control barrier functions (LFCBF) enforcement will be introduced as a strategy to enable a robot leader, in a multi-robot interactions, to complete its task in minimum time, hence aggressively maneuvering. An algorithmic implementation of the proposed solution is provided and safety is verified via simulation.
  2. Modern nonlinear control theory seeks to develop feedback controllers that endow systems with properties such as safety and stability. The guarantees ensured by these controllers often rely on accurate estimates of the system state for determining control actions. In practice, measurement model uncertainty can lead to error in state estimates that degrades these guarantees. In this paper, we seek to unify techniques from control theory and machine learning to synthesize controllers that achieve safety in the presence of measurement model uncertainty. We define the notion of a Measurement-Robust Control Barrier Function (MR-CBF) as a tool for determining safe control inputsmore »when facing measurement model uncertainty. Furthermore, MR-CBFs are used to inform sampling methodologies for learning-based perception systems and quantify tolerable error in the resulting learned models. We demonstrate the efficacy of MR-CBFs in achieving safety with measurement model uncertainty on a simulated Segway system.« less
  3. Shared autonomy provides a framework where a human and an automated system, such as a robot, jointly control the system’s behavior, enabling an effective solution for various applications, including human-robot interaction and remote operation of a semi-autonomous system. However, a challenging problem in shared autonomy is safety because the human input may be unknown and unpredictable, which affects the robot’s safety constraints. If the human input is a force applied through physical contact with the robot, it also alters the robot’s behavior to maintain safety. We address the safety issue of shared autonomy in real-time applications by proposing a two-layermore »control framework. In the first layer, we use the history of human input measurements to infer what the human wants the robot to do and define the robot’s safety constraints according to that inference. In the second layer, we formulate a rapidly-exploring random tree of barrier pairs, with each barrier pair composed of a barrier function and a controller. Using the controllers in these barrier pairs, the robot is able to maintain its safe operation under the intervention from the human input. This proposed control framework allows the robot to assist the human while preventing them from encountering safety issues. We demonstrate the proposed control framework on a simulation of a two-linkage manipulator robot.« less
  4. Abstract

    Control Barrier Functions (CBFs) have become popular for enforcing — via barrier constraints — the safe operation of nonlinear systems within an admissible set. For systems with input delay(s) of the same length, constrained control has been achieved by combining a CBF for the delay free system with a state predictor that compensates the single input delay. Recently, this approach was extended to multi input systems with input delays of different lengths. One limitation of this extension is that barrier constraint adherence can only be guaranteed after the longest input delay has been compensated and all input channels becomemore »available for control. In this paper, we consider the problem of enforcing constraint adherence when only a subset of input delays have been compensated. In particular, we propose a new barrier constraint formulation that ensures that when possible, a subset of input channels with shorter delays will be utilized for keeping the system in the admissible set even before longer input delays have been compensated. We include a numerical example to demonstrate the effectiveness of the proposed approach.

    « less
  5. Safety is a critical component in today's autonomous and robotic systems. Many modern controllers endowed with notions of guaranteed safety properties rely on accurate mathematical models of these nonlinear dynamical systems. However, model uncertainty is always a persistent challenge weakening theoretical guarantees and compromising safety. For safety-critical systems, this is an even bigger challenge. Typically, safety is ensured by constraining the system states within a safe constraint set defined a priori by relying on the model of the system. A popular approach is to use Control Barrier Functions (CBFs) that encode safety using a smooth function. However, CBFs fail inmore »the presence of model uncertainties. Moreover, an inaccurate model can either lead to incorrect notions of safety or worse, incur system critical failures. Addressing these drawbacks, we present a novel safety formulation that leverages properties of CBFs and positive definite kernels to design Gaussian CBFs. The underlying kernels are updated online by learning the unmodeled dynamics using Gaussian Processes (GPs). While CBFs guarantee forward invariance, the hyperparameters estimated using GPs update the kernel online and thereby adjust the relative notion of safety. We demonstrate our proposed technique on a safety-critical quadrotor on SO(3) in the presence of model uncertainty in simulation. With the kernel update performed online, safety is preserved for the system.« less