skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improved Abstraction for Clear Channel Assessment in ns-3 802.11 WLAN Model
An important challenge for ns-3 is to enable efficient performance evaluation of increasingly dense and heterogeneous networks,cognizant of cross-layer (specifically, Layers 1 & 2) interactions. In this work(a continuation of U.Washington efforts),we present improved physical layer abstractions for a key component underlying all 802.11 WLAN MAC performance evaluation-the Clear Channel Assessment(CCA) procedure central to CSMA/CA-for implementation in the ns-3 simulator. We model the preamble correlation process as typically implemented in 802.11 radio and represent the resulting probability of detection as a look-up table with a parameterized correlation threshold for different receive sensitivity strategies. Further, we also added a new carrier sense threshold adjustment mechanism to allow nodes to enable bypassing the default(and to date,fixed) -82dBm threshold. Such a capability aligns ns-3 for performance evaluation of dense networks equipped with new spatial reuse mechanisms. We demonstrate this via simulation of spatial reuse gains from dynamic sensitivity control(DSC) that are verified against IEEE 802.11ax standards group contributions. Using simulation results from a fixed rate multi-BSS network,we then identify valuable design guidelines to maximize the aggregate throughput with DSC.  more » « less
Award ID(s):
1836725
PAR ID:
10121872
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proc. 2019 Workshop on ns-3
Page Range / eLocation ID:
49 to 56
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Henderson, Thomas; Imputato, Pasquale; Liu, Yuchen; Gamess, Eric (Ed.)
    Physical (PHY) layer abstraction is an effective method to reduce the runtimes compared with link simulations but still accurately characterize the link performance. As a result, PHY layer abstraction for IEEE 802.11 WLAN and 3GPP LTE/5G has been widely configured in the network simulators such as ns-3, which achieve faster system-level simulations quantifying the network performance. Since the first publicly accessible 5G NR Sidelink (SL) link simulator has been recently developed, it provides a possibility of implementing the first PHY layer abstraction on 5G NR SL. This work deploys an efficient PHY layer abstraction method (i.e., EESM-log-SGN) for 5G NR SL based on the offline NR SL link simulation. The obtained layer abstraction which is further stored in ns-3 for use aims at the common 5G NR SL scenario of OFDM unicast single layer mapping in the context of Independent and Identically Distributed (i.i.d.) frequency-selective channels. We provide details about implementation, performance, and validation. 
    more » « less
  2. Wi-Fi is one of the key wireless technologies for the Internet of things (IoT) owing to its ubiquity. Low-power operation of commercial Wi-Fi enabled IoT modules (typically powered by replaceable batteries) is critical in order to achieve a long battery life, while maintaining connectivity, and thereby reduce the cost and frequency of maintenance. In this work, we focus on commonly used sparse periodic uplink traffic scenario in IoT. Through extensive experiments with a state-of-the-art Wi-Fi enabled IoT module (Texas Instruments SimpleLink CC3235SF), we study the performance of the power save mechanism (PSM) in the IEEE 802.11 standard and show that the battery life of the module is limited, while running thin uplink traffic, to ~30% of its battery life on an idle connection, even when utilizing IEEE 802.11 PSM. Focusing on sparse uplink traffic, a prominent traffic scenario for IoT (e.g., periodic measurements, keep-alive mechanisms, etc.), we design a simulation framework for single-user sparse uplink traffic on ns-3, and develop a detailed and platform-agnostic accurate power consumption model within the framework and calibrate it to CC3235SF. Subsequently, we present five potential power optimization strategies (including standard IEEE 802.11 PSM) and analyze, with simulation results, the sensitivity of power consumption to specific network characteristics (e.g., round-trip time (RTT) and relative timing between TCP segment transmissions and beacon receptions) to present key insights. Finally, we propose a standard-compliant client-side cross-layer power saving optimization algorithm that can be implemented on client IoT modules. We show that the proposed optimization algorithm extends battery life by 24%, 26%, and 31% on average for sparse TCP uplink traffic with 5 TCP segments per second for networks with constant RTT values of 25 ms, 10 ms, and 5 ms, respectively. 
    more » « less
  3. Millimeter Wave (mmWave) networks can deliver multi-Gbps wireless links that use extremely narrow directional beams. This provides us with a new opportunity to exploit spatial reuse in order to scale network throughput. Exploiting such spatial reuse, however, requires aligning the beams of all nodes in a network. Aligning the beams is a difficult process which is complicated by indoor multipath, which can create interference, as well as by the inefficiency of carrier sense at detecting interference in directional links. This paper presents BounceNet, the first many-to-many millimeter wave beam alignment protocol that can exploit dense spatial reuse to allow many links to operate in parallel in a confined space and scale the wireless throughput with the number of clients. Results from three millimeter wave testbeds show that BounceNet can scale the throughput with the number of clients to deliver a total network data rate of more than 39 Gbps for 10 clients, which is up to 6.6× higher than current 802.11 mmWave standards. 
    more » « less
  4. Packet-level network simulators such as ns-3 require accurate physical (PHY) layer models for packet error rate (PER) for wideband transmission over fading wireless channels. To manage complexity and achieve practical runtimes, suitable link-to-system mappings can convert high fidelity PHY layer models for use by packet-level simulators. This work reports on two new contributions to the ns-3 Wi-Fi module, which presently only contains error models for Single Input Single Output (SISO), additive white Gaussian noise (AWGN) channels. To improve this, a complete implementation of a link-to-system mapping technique for IEEE 802.11 TGn fading channels is presented that involves a method for efficient generation of channel realizations within ns-3. The runtimes for the prior method suffers from scalability issues with increasing dimensionality of Multiple Input Multiple Output (MIMO) systems. We next propose a novel method to directly characterize the probability distribution of the"effective SNR" in link-to-system mapping. This approach is shown to require modest storage and not only reduces ns-3 runtime, it is also insensitive to growth of MIMO dimensionality. We describe the principles of this new method and provide details about its implementation, performance, and validation in ns-3. 
    more » « less
  5. Deep neural networks (DNNs) come with many forms, such as convolutional neural networks, multilayer perceptron and recurrent neural networks, to meet diverse needs of machine learning applications. However, existing DNN accelerator designs, when used to execute multiple neural networks, suffer from underutilization of processing elements, heavy feature map traffic, and large area overhead. In this paper, we propose a novel approach, Polymorphic Accelerators, to address the flexibility issue fundamentally. We introduce the abstraction of logical accelerators to decouple the fixed mapping with physical resources. Three procedures are proposed that work collaboratively to reconfigure the accelerator for the current network that is being executed and to enable cross-layer data reuse among logical accelerators. Evaluation results show that the proposed approach achieves significant improvement in data reuse, inference latency and performance, e.g., 1.52x and 1.63x increase in throughput compared with state-of-the-art flexible dataflow approach and resource partitioning approach, respectively. This demonstrates the effectiveness and promise of polymorphic accelerator architecture. 
    more » « less