The utility of a match in a two-sided matching market often depends on a variety of characteristics of the two agents (e.g., a buyer and a seller) to be matched. In contrast to the matching market literature, this utility may best be modeled by a general matching utility distribution. In “Asymptotically Optimal Control of a Centralized Dynamic Matching Market with General Utilities,” Blanchet, Reiman, Shah, Wein, and Wu consider general matching utilities in the context of a centralized dynamic matching market. To analyze this difficult problem, they combine two asymptotic techniques: extreme value theory (and regularly varying functions) and fluid asymptotics of queueing systems. A key trade-off in this problem is market thickness: Do we myopically make the best match that is currently available, or do we allow the market to thicken in the hope of making a better match in the future while avoiding agent abandonment? Their asymptotic analysis derives quite explicit results for this problem and reveals how the optimal amount of market thickness increases with the right tail of the matching utility distribution and the amount of market imbalance. Their use of regularly varying functions also allows them to consider correlated matching utilities (e.g., buyers have positively correlated utilities with a given seller), which is ubiquitous in matching markets.
more »
« less
The Segmentation-Thickness Tradeoff in Online Marketplaces
A core tension in the operations of online marketplaces is between segmentation (wherein platforms can increase revenue by segmenting the market into ever smaller sub-markets) and thickness (wherein the size of the sub-market affects the utility experienced by an agent). An important example of this is in dynamic online marketplaces, where buyers and sellers, in addition to preferences for different matches, also have finite patience (or deadlines) for being matched. We formalize this trade-off via a novel optimization problem that we term as 'Two-sided Facility Location': we consider a market wherein agents arrive at nodes embedded in an underlying metric space, where the distance between a buyer and seller captures the quality of the corresponding match. The platform posts prices and wages at the nodes, and opens a set of virtual clearinghouses where agents are routed for matching. To ensure high match-quality, the platform imposes a distance constraint between an agent and its clearinghouse; to ensure thickness, the platform requires the flow to any clearinghouse be at least a pre-specified lower bound. Subject to these constraints, the goal of the platform is to maximize the social surplus subject to weak budget balance, i.e., profit being non-negative. Our work characterizes the complexity of this problem by providing both hardness results as well as algorithms for this setting; in particular, we present an algorithm that for any constant ε > 0 yields a (1 + ε ) approximation for the gains from trade, while relaxing the match quality (i.e., maximum distance of any match) by a constant factor.
more »
« less
- Award ID(s):
- 1839346
- PAR ID:
- 10121928
- Date Published:
- Journal Name:
- ACM SIGMETRICS performance evaluation review
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 1557-9484
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Guruswami, Venkatesan (Ed.)We study two recent combinatorial contract design models, which highlight different sources of complexity that may arise in contract design, where a principal delegates the execution of a costly project to others. In both settings, the principal cannot observe the choices of the agent(s), only the project’s outcome (success or failure), and incentivizes the agent(s) using a contract, a payment scheme that specifies the payment to the agent(s) upon a project’s success. We present results that resolve open problems and advance our understanding of the computational complexity of both settings. In the multi-agent setting, the project is delegated to a team of agents, where each agent chooses whether or not to exert effort. A success probability function maps any subset of agents who exert effort to a probability of the project’s success. For the family of submodular success probability functions, Dütting et al. [2023] established a poly-time constant factor approximation to the optimal contract, and left open whether this problem admits a PTAS. We answer this question on the negative, by showing that no poly-time algorithm guarantees a better than 0.7-approximation to the optimal contract. For XOS functions, they give a poly-time constant approximation with value and demand queries. We show that with value queries only, one cannot get any constant approximation. In the multi-action setting, the project is delegated to a single agent, who can take any subset of a given set of actions. Here, a success probability function maps any subset of actions to a probability of the project’s success. Dütting et al. [2021a] showed a poly-time algorithm for computing an optimal contract for gross substitutes success probability functions, and showed that the problem is NP-hard for submodular functions. We further strengthen this hardness result by showing that this problem does not admit any constant factor approximation. Furthermore, for the broader class of XOS functions, we establish the hardness of obtaining a n^{-1/2+ε}-approximation for any ε > 0.more » « less
-
We study the problem of online learning in two-sided non-stationary matching markets, where the objective is to converge to a stable match. In particular, we consider the setting where one side of the market, the arms, has fixed known set of preferences over the other side, the players. While this problem has been studied when the players have fixed but unknown preferences, in this work we study the problem of how to learn when the preferences of the players are time varying and unknown. Our contribution is a methodology that can handle any type of preference structure and variation scenario. We show that, with the proposed algorithm, each player receives a uniform sub-linear regret of {O˜(𝐿1/2𝑇𝑇1/2)} up to the number of changes in the underlying preferences of the agents, 𝐿𝑇. Therefore, we show that the optimal rates for single-agent learning can be achieved in spite of the competition up to a difference of a constant factor. We also discuss extensions of this algorithm to the case where the number of changes need not be known a priori.more » « less
-
Competition between traditional platforms is known to improve user utility by aligning the platform's actions with user preferences. But to what extent is alignment exhibited in data-driven marketplaces? To study this question from a theoretical perspective, we introduce a duopoly market where platform actions are bandit algorithms and the two platforms compete for user participation. A salient feature of this market is that the quality of recommendations depends on both the bandit algorithm and the amount of data provided by interactions from users. This interdependency between the algorithm performance and the actions of users complicates the structure of market equilibria and their quality in terms of user utility. Our main finding is that competition in this market does not perfectly align market outcomes with user utility. Interestingly, market outcomes exhibit misalignment not only when the platforms have separate data repositories, but also when the platforms have a shared data repository. Nonetheless, the data sharing assumptions impact what mechanism drives misalignment and also affect the specific form of misalignment (e.g. the quality of the best-case and worst-case market outcomes). More broadly, our work illustrates that competition in digital marketplaces has subtle consequences for user utility that merit further investigation.more » « less
-
Motivated by applications from gig economy and online marketplaces, we study a two-sided queueing system under joint pricing and matching controls. The queueing system is modeled by a bipartite graph, where the vertices represent customer or server types and the edges represent compatible customer-server pairs. We propose a threshold-based two-price policy and queue length-based maximum-weight matching policy and show that it achieves a near-optimal profit. We study the system under the large-scale regime, wherein the arrival rates are scaled up, and under the large-market regime, wherein both the arrival rates and numbers of customer and server types increase. We show that two-price policy is a primary driver for optimality in the large-scale regime. We demonstrate the advantage of maximum-weight matching with respect to the number of customer and server types. Concurrently, we show that the interplay of pricing and matching is crucial for optimality in the large-market regime.more » « less