The utility of a match in a twosided matching market often depends on a variety of characteristics of the two agents (e.g., a buyer and a seller) to be matched. In contrast to the matching market literature, this utility may best be modeled by a general matching utility distribution. In “Asymptotically Optimal Control of a Centralized Dynamic Matching Market with General Utilities,” Blanchet, Reiman, Shah, Wein, and Wu consider general matching utilities in the context of a centralized dynamic matching market. To analyze this difficult problem, they combine two asymptotic techniques: extreme value theory (and regularly varying functions) and fluid asymptotics of queueing systems. A key tradeoff in this problem is market thickness: Do we myopically make the best match that is currently available, or do we allow the market to thicken in the hope of making a better match in the future while avoiding agent abandonment? Their asymptotic analysis derives quite explicit results for this problem and reveals how the optimal amount of market thickness increases with the right tail of the matching utility distribution and the amount of market imbalance. Their use of regularly varying functions also allows them to consider correlated matching utilities (e.g., buyers have positively correlated utilities with a given seller), which is ubiquitous in matching markets.
more » « less NSFPAR ID:
 10483203
 Publisher / Repository:
 Operations Research
 Date Published:
 Journal Name:
 Operations Research
 Volume:
 70
 Issue:
 6
 ISSN:
 0030364X
 Page Range / eLocation ID:
 3355 to 3370
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

A core tension in the operations of online marketplaces is between segmentation (wherein platforms can increase revenue by segmenting the market into ever smaller submarkets) and thickness (wherein the size of the submarket affects the utility experienced by an agent). An important example of this is in dynamic online marketplaces, where buyers and sellers, in addition to preferences for different matches, also have finite patience (or deadlines) for being matched. We formalize this tradeoff via a novel optimization problem that we term as 'Twosided Facility Location': we consider a market wherein agents arrive at nodes embedded in an underlying metric space, where the distance between a buyer and seller captures the quality of the corresponding match. The platform posts prices and wages at the nodes, and opens a set of virtual clearinghouses where agents are routed for matching. To ensure high matchquality, the platform imposes a distance constraint between an agent and its clearinghouse; to ensure thickness, the platform requires the flow to any clearinghouse be at least a prespecified lower bound. Subject to these constraints, the goal of the platform is to maximize the social surplus subject to weak budget balance, i.e., profit being nonnegative. Our work characterizes the complexity of this problem by providing both hardness results as well as algorithms for this setting; in particular, we present an algorithm that for any constant ε > 0 yields a (1 + ε ) approximation for the gains from trade, while relaxing the match quality (i.e., maximum distance of any match) by a constant factor.more » « less

We study gains from trade in multidimensional twosided markets. Specifically, we focus on a setting with n heterogeneous items, where each item is owned by a different seller i, and there is a constrainedadditive buyer with feasibility constraint ℱ. Multidimensional settings in onesided markets, e.g. where a seller owns multiple heterogeneous items but also is the mechanism designer, are wellunderstood. In addition, singledimensional settings in twosided markets, e.g. where a buyer and seller each seek or own a single item, are also wellunderstood. Multidimensional twosided markets, however, encapsulate the major challenges of both lines of work: optimizing the sale of heterogeneous items, ensuring incentivecompatibility among both sides of the market, and enforcing budget balance. We present, to the best of our knowledge, the first worstcase approximation guarantee for gains from trade in a multidimensional twosided market. Our first result provides an O(log(1/r))approximation to the firstbest gains from trade for a broad class of downwardclosed feasibility constraints (such as matroid, matching, knapsack, or the intersection of these). Here r is the minimum probability over all items that a buyer's value for the item exceeds the seller's cost. Our second result removes the dependence on r and provides an unconditional O(log n)approximation to the secondbest gains from trade. We extend both results for a general constrainedadditive buyer, losing another O(log n)factor enroute. The first result is achieved using a fixed posted price mechanism, and the analysis involves a novel application of the prophet inequality or a new concentration inequality. Our second result follows from a stitching lemma that allows us to upper bound the secondbest gains from trade by the firstbest gains from trade from the “likely to trade” items (items with trade probability at least 1/n) and the optimal profit from selling the “unlikely to trade” items. We can obtain an O(log n)approximation to the first term by invoking our O(log(1/r))approximation on the “likely to trade” items. We introduce a generalization of the fixed posted price mechanism—seller adjusted posted price—to obtain an O(log n)approximation to the optimal profit for the “unlikely to trade” items. Unlike fixed posted price mechanisms, not all seller adjusted posted price mechanisms are incentive compatible and budget balanced. We develop a new argument based on “allocation coupling” to show the seller adjusted posted price mechanism used in our approximation is indeed budget balanced and incentivecompatible.more » « less

Abstract Rough stochastic volatility models have attracted a lot of attention recently, in particular for the linear option pricing problem. In this paper, starting with power utilities, we propose to use a
martingale distortion representation of the optimal value function for the nonlinear asset allocation problem in a (non‐Markovian) fractional stochastic environment (for all values of the Hurst index). We rigorously establish a first‐order approximation of the optimal value, when the return and volatility of the underlying asset are functions of a stationary slowly varying fractional Ornstein–Uhlenbeck process. We prove that this approximation can be also generated by a fixed zeroth‐ order trading strategy providing an explicit strategy which is asymptotically optimal in all admissible controls. Furthermore, we extend the discussion to general utility functions, and obtain the asymptotic optimality of this fixed strategy in a specific family of admissible strategies. 
We study gains from trade in multidimensional twosided markets. Specifically, we focus on a setting with n heterogeneous items, where each item is owned by a different seller i, and there is a constrainedadditive buyer with a feasibility constraint. Multidimensional settings in onesided markets, e.g. where a seller owns multiple heterogeneous items but also is the mechanism designer, are wellunderstood. In addition, singledimensional settings in twosided markets, e.g. where a buyer and seller each seek or own a single item, are also wellunderstood. Multidimensional twosided markets, however, encapsulate the major challenges of both lines of work: optimizing the sale of heterogeneous items, ensuring incentivecompatibility among both sides of the market, and enforcing budget balance. We present, to the best of our knowledge, the first worstcase approximation guarantee for gains from trade in a multidimensional twosided market. Our first result provides an O(log(1/r))approximation to the firstbest gains from trade for a broad class of downwardclosed feasibility constraints (such as matroid, matching, knapsack, or the intersection of these). Here r is the minimum probability over all items that a buyer's value for the item exceeds the seller's cost. Our second result removes the dependence on r and provides an unconditional O(log n)approximation to the secondbest gains from trade. We extend both results for a general constrainedadditive buyer, losing another O(log n)factor enroute.more » « less

Etessami, Kousha ; Feige, Uriel ; Puppis, Gabriele (Ed.)To guarantee all agents are matched in general, the classic Deferred Acceptance algorithm needs complete preference lists. In practice, preference lists are short, yet stable matching still works well. This raises two questions: Why does it work well? Which proposals should agents include in their preference lists? We study these questions in a model, introduced by Lee, with preferences based on correlated cardinal utilities: these utilities are based on common public ratings of each agent together with individual private adjustments. Lee showed that for suitable utility functions, in large markets, with high probability, for most agents, all stable matchings yield similar valued utilities. By means of a new analysis, we strengthen Lee's result, showing that in large markets, with high probability, for all but the agents with the lowest public ratings, all stable matchings yield similar valued utilities. We can then deduce that for all but the agents with the lowest public ratings, each agent has an easily identified length O(log n) preference list that includes all of its stable matches, addressing the second question above. We note that this identification uses an initial communication phase. We extend these results to settings where the two sides have unequal numbers of agents, to manytoone settings, e.g. employers and workers, and we also show the existence of an epsilonBayesNash equilibrium in which every agent makes relatively few proposals. These results all rely on a new technique for sidestepping the conditioning between the tentative matching events that occur over the course of a run of the Deferred Acceptance algorithm. We complement these theoretical results with an experimental study.more » « less