Grading of bandgap by alloying CdTe with selenium to form a CdSexTe1–x/CdTe‐graded bilayer device has led to a device efficiency over 19%. A CdSexTe1–xabsorber would increase the short‐circuit current due to its lower bandgap but at the expense of open‐circuit voltage. It has been demonstrated that adding a CdTe layer at the back of such a CdSexTe1–xfilm reduces the voltage deficit caused by the lower bandgap of absorber from selenium alloying while maintaining the higher short‐circuit current. This leads to a photovoltaic device that draws advantage from both materials with an efficiency greater than either of them. Herein, a detailed account using device data, ultraviolet photoelectron spectroscopy, electron microscopy, and first‐principles density functional theory modeling is provided, which shows that CdTe acts as an electron reflector for CdSexTe1–x.
more »
« less
Characterization of thin CdTe solar cells with a CdSeTe front layer
ABSTRACT Thin CdTe photovoltaic device efficiencies show significant improvement with the incorporation of a CdSeTe alloy layer deposited between a MgZnO emitter and CdTe absorber. CdTe and CdSeTe/CdTe devices fabricated by close-space sublimation with a total absorber thickness of 1.5 µm are studied using microscopy measurements and show minimal diffusion of Se into the CdTe. Current loss analysis shows that the CdSeTe layer is the primary absorber in the CdSeTe/CdTe structure, and fill factor loss analysis shows that ideality-factor reduction is the dominant mechanism of fill factor loss. Improvement in the CdSeTe/CdTe absorber quality compared to CdTe is also reflected in spectral and time-resolved photoluminescence measurements. Current density vs. voltage measurements show an increase in current density of up to 2 mA/cm 2 with the addition of CdSeTe due to a band gap shift from 1.5 to 1.42 eV for CdTe and CdSeTe/CdTe absorbers respectively. Voltage deficit is lower with the incorporation of the CdSeTe layer, corroborated by improved electroluminescence intensity. The addition of CdSeTe into CdTe device structures has increased device efficiencies from 14.7% to 15.6% for absorbers with a total thickness less than two microns.
more »
« less
- Award ID(s):
- 1726898
- PAR ID:
- 10122049
- Date Published:
- Journal Name:
- MRS Advances
- Volume:
- 4
- Issue:
- 37
- ISSN:
- 2059-8521
- Page Range / eLocation ID:
- 2053 to 2062
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
CdMgTe with a 1.8-eV band gap was deposited at the back of MgZnO/CdSeTe/CdTe superstrates to create a conduction band barrier and reduce back surface recombination. To minimize CdCl2 passivation loss, substrate preheat time was varied. Photoluminescence, carrier lifetime, and quantum efficiency showed improvement with shorter preheat and secondary ion mass spectrometry profiles showed retention of CdCl2 passivation for short CdMgTe preheat. An HCl acid etch treatment and CdTe cap layer were incorporated independently after the CdMgTe on additional devices to minimize magnesium oxidation and the CdTe cap device showed initial promise with device efficiency reaching 13.1%.more » « less
-
Group V doping in CdSeTe device can improve power conversion efficiency (PCE) and device stability. Arsenic (As) incorporation into CdSeTe has been demonstrated via both in situ and ex situ techniques; however, optimizing the back contact for group V‐doped CdSeTe devices remains a critical challenge. Here, solution‐processed arsenic chalcogenides (i.e., As2Te3and As2Se3) as dual‐role materials, serving as both dopants and back‐contact materials for high‐efficiency CdSeTe devices, are investigated. During the formation of the back contact, a portion of the arsenic chalcogenides diffuses into the CdSeTe absorber, facilitating p‐type doping. The remaining materials forms a stable back‐contact layer that facilitate carrier collection and reducing recombination losses at the CdSeTe back surface. Particularly, CdSeTe device employing Te rich As2Te3layer as the dopant and back‐contact materials achieves a PCE of 18.34%, demonstrating the dual functionality of solution‐processed arsenic chalcogenides in simultaneously doping the absorber and optimizing charge extraction. This solution based cost‐effective As doping approach offers a promising pathway for advancing CdSeTe photovoltaic technology.more » « less
-
Cadmium telluride and silicon are among the widely used absorber materials in photovoltaic industry. A tandem solar cell of these two can absorb significant portion of solar spectrum to yield high efficiency due to the added voltage of the two solar cells. On basis of low-cost production, a CdTe/Si cell has the potential to produce low-cost and high efficiency tandem PV. The CdTe top cell in a substrate configuration is essential to achieve a tandem between CdTe and Si. A functional CdS/CdTe solar cell in the substrate configuration was fabricated on a Si wafer. Current -Voltage measurements show a diode-like curve with lower J-V parameters compared to standard CdS/CdTe cells. SCAPS simulations were performed to identify possible reasons for poor performance and help improve the device performance.more » « less
-
Air‐stable p‐type SnF2:Cs2SnI6with a bandgap of 1.6 eV has been demonstrated as a promising material for Pb‐free halide perovskite solar cells. Crystalline Cs2SnI6phase is obtained with CsI, SnI2, and SnF2salts in gamma‐butyrolactone solvent, but not with dimethyl sulfoxide andN,N‐dimethylformamide solvents. Cs2SnI6is found to be stable for at least 1000 h at 100 °C when dark annealed in nitrogen atmosphere. In this study, Cs2SnI6has been used in a superstrate n–i–p planar device structure enabled by a spin‐coated absorber thickness of ≈2 μm on a chemical bath deposited Zn(O,S) electron transport layer. The best device power conversion efficiency reported here is 5.18% withVOCof 0.81 V, 9.28 mA cm−2JSC, and 68% fill factor. The dark saturation current and diode ideality factor are estimated as 1.5 × 10−3 mA cm−2and 2.18, respectively. The devices exhibit a highVOCdeficit and low short‐circuit current density due to high bulk and interface recombination. Device efficiency can be expected to increase with improvement in material and interface quality, charge transport, and device engineering.more » « less
An official website of the United States government

