skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D Interaction with Virtual Objects in Real Water
The objective of this research was to evaluate and compare perceived fatigue and usability of 3D user interfaces in and out of the water. Virtual Reality (VR) in the water has several potential applications, such as aquatic physical rehabilitation, where patients are typically standing waist or shoulder deep in a pool and performing exercises in the water. However, there have been few works that developed waterproof VR/AR systems and none of them have assessed fatigue, which has previously been shown to be a drawback in many 3D User Interfaces above water. This research presents a novel prototype system for developing waterproof VR experiences and investigates the effect of submersion in water on fatigue as compared to above water. Using a classic selection and docking task, results suggest that being underwater had no significant effect on performance, but did reduce perceived fatigue, which is important for aquatic rehabilitation. Previous 3D interaction methods that were once thought to be too fatiguing might still be viable in water.  more » « less
Award ID(s):
1648949 1350995
PAR ID:
10122176
Author(s) / Creator(s):
;
Date Published:
Journal Name:
11th International Conference on Virtual Worlds and Games for Serious Applications (VS-GAMES 2019)
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Virtual reality is a powerful tool for teaching 3D digital technologies in building engineering, as it facilitates the spatial perception of three-dimensional space. Spatial orientation skill is necessary for understanding 3D space. With VR, users navigate through virtually designed buildings and must be constantly aware of their position relative to other elements of the environment (orientation during navigation). In the present study, 25 building engineering students performed navigation tasks in a desktop-VR environment workshop. Performance of students using the desktop-VR was compared to a previous workshop in which navigation tasks were carried out using head-mounted displays. The Perspective Taking/Spatial Orientation Test measured spatial orientation skill. A questionnaire on user experience in the virtual environment was also administered. The gain in spatial orientation skill was 12.62%, similar to that obtained with head-mounted displays (14.23%). The desktop VR environment is an alternative to the HMD-VR environment for planning strategies to improve spatial orientation. Results from the user-experience questionnaire showed that the desktop VR environment strategy was well perceived by students in terms of interaction, 3D visualization, navigation, and sense of presence. Unlike in the HDM VR environment, student in the desktop VR environment did not report feelings of fatigue or dizziness. 
    more » « less
  2. Virtual reality (VR) computer interfaces show promise for improving societal communication and representation of information due to their unique ability to be placed spatially around the user in three-dimensional (3D) space. This opens new possibilities for presentation and user interaction with the target information, and may be especially impactful for the education of science, technology, engineering, and mathematics (STEM) professionals. Simulations and visualizations have been shown in research studies to improve the efficiency of STEM learners compared to the less sensorimotor rich learning mediums of live instruction and textbook reading. Yet, learning science research into immersive computer simulation environments for educational applications remains limited. To address this research gap, we analyzed a fundamental VR interface capability, virtual environmental traversal, and its impact on participants' learning. We altered the traversal ability between two groups of STEM learners within the same virtual environment and compared their performance. Findings point that VR computer interfaces, regardless of environmental traversal, are suitable STEM learning environments, but that environmental traversal can increase learning efficiency. 
    more » « less
  3. null (Ed.)
    There is a significant amount of synergy between virtual reality (VR) and the field of robotics. However, it has only been in approximately the past five years that commercial immersive VR devices have been available to developers. This new availability has led to a rapid increase in research using VR devices in the field of robotics, especially in the development of VR interfaces for operating robots. In this paper, we present a systematic review on VR interfaces for robot operation that utilize commercially available immersive VR devices. A total of 41 papers published between 2016–2020 were collected for review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Papers are discussed and categorized into five categories: (1) Visualization, which focuses on displaying data or information to operators; (2) Robot Control and Planning, which focuses on connecting human input or movement to robot movement; (3) Interaction, which focuses on the development of new interaction techniques and/or identifying best interaction practices; (4) Usability, which focuses on user experiences of VR interfaces; and (5) Infrastructure, which focuses on system architectures or software to support connecting VR and robots for interface development. Additionally, we provide future directions to continue development in VR interfaces for operating robots. 
    more » « less
  4. The objective of this research is to compare the effectiveness of different tracking devices underwater. There have been few works in aquatic virtual reality (VR) - i.e., VR systems that can be used in a real underwater environment. Moreover, the works that have been done have noted limitations on tracking accuracy. Our initial test results suggest that inertial measurement units work well underwater for orientation tracking but a different approach is needed for position tracking. Towards this goal, we have waterproofed and evaluated several consumer tracking systems intended for gaming to determine the most effective approaches. First, we informally tested infrared systems and fiducial marker based systems, which demonstrated significant limitations of optical approaches. Next, we quantitatively compared inertial measurement units (IMU) and a magnetic tracking system both above water (as a baseline) and underwater. By comparing the devices rotation data, we have discovered that the magnetic tracking system implemented by the Razer Hydra is more accurate underwater as compared to a phone-based IMU. This suggests that magnetic tracking systems should be further explored for underwater VR applications. 
    more » « less
  5. Traditional interfaces for interacting with 3D models in virtual environments lack support for spatiotemporal 3D models such as point clouds and meshes generated by markerless capture systems. We present a virtual reality (VR) interface that enables the user to perform spatial and temporal interactions with spatiotemporal 3D models. To accommodate the high volume of spatiotemporal data, we provide a data format for spatiotemporal 3D models which has an average speedup of 3.84 and a space reduction of 43.9% over traditional model file formats. We enable the user to manipulate spatiotemporal 3D data using gestures intuitive from real-world experience or by using a VR user interface similar to traditional 2D visual interactions. 
    more » « less