skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Carbon-13 dynamic nuclear polarization in diamond via a microwave-free integrated cross effect
Color-center–hosting semiconductors are emerging as promising source materials for low-field dynamic nuclear polarization (DNP) at or near room temperature, but hyperfine broadening, susceptibility to magnetic field heterogeneity, and nuclear spin relaxation induced by other paramagnetic defects set practical constraints difficult to circumvent. Here, we explore an alternate route to color-center–assisted DNP using nitrogen-vacancy (NV) centers in diamond coupled to substitutional nitrogen impurities, the so-called P1 centers. Working near the level anticrossing condition—where the P1 Zeeman splitting matches one of the NV spin transitions—we demonstrate efficient microwave-free 13 C DNP through the use of consecutive magnetic field sweeps and continuous optical excitation. The amplitude and sign of the polarization can be controlled by adjusting the low-to-high and high-to-low magnetic field sweep rates in each cycle so that one is much faster than the other. By comparing the 13 C DNP response for different crystal orientations, we show that the process is robust to magnetic field/NV misalignment, a feature that makes the present technique suitable to diamond powders and settings where the field is heterogeneous. Applications to shallow NVs could capitalize on the greater physical proximity between surface paramagnetic defects and outer nuclei to efficiently polarize target samples in contact with the diamond crystal.  more » « less
Award ID(s):
1827037 1903839 1903803
PAR ID:
10122261
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
37
ISSN:
0027-8424
Page Range / eLocation ID:
18334 to 18340
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the spatial distribution of the P1 centers is crucial for diamond-based sensors and quantum devices. P1 centers serve as polarization sources for dynamic nuclear polarization (DNP) quantum sensing and play a significant role in the relaxation of nitrogen vacancy (NV) centers. Additionally, the distribution of NV centers correlates with the distribution of P1 centers, as NV centers are formed through the conversion of P1 centers. We utilized DNP and pulsed electron paramagnetic resonance (EPR) techniques that revealed strong clustering of a significant population of P1 centers that exhibit exchange coupling and produce asymmetric line shapes. The 13C DNP frequency profile at a high magnetic field revealed a pattern that requires an asymmetric EPR line shape of the P1 clusters with electron–electron (e–e) coupling strengths exceeding the 13C nuclear Larmor frequency. EPR and DNP characterization at high magnetic fields was necessary to resolve energy contributions from different e–e couplings. We employed a two-frequency pump–probe pulsed electron double resonance technique to show cross-talk between the isolated and clustered P1 centers. This finding implies that the clustered P1 centers affect all of the P1 populations. Direct observation of clustered P1 centers and their asymmetric line shape offers a novel and crucial insight into understanding magnetic noise sources for quantum information applications of diamonds and for designing diamond-based polarizing agents with optimized DNP efficiency for 13C and other nuclear spins of analytes. We propose that room temperature 13C DNP at a high field, achievable through straightforward modifications to existing solution-state NMR systems, is a potent tool for evaluating and controlling diamond defects. 
    more » « less
  2. Abstract The coherence times of solid-state spin qubits are often limited by the presence of a spin bath. Characterizing the spectrum of the local magnetic field fluctuations of the bath is key to understanding spin qubit decoherence. Here we use pulsed electron paramagnetic resonance (pEPR) based noise spectroscopy to measure the magnetic noise power spectra for ensembles of P1 (substitutional nitrogen) centers in diamond that typically form the bath for NV (nitrogen-vacancy) centers. The Carr-Purcell-Meiboom-Gill (CPMG) dynamical decoupling experiments on the P1 centers were performed on a low [N] CVD (chemical vapor deposition) sample and a high [N] HPHT (high-temperature, high-pressure) sample at 89 mT. We characterize the NV centers of the latter sample using the same 2.5 GHz pEPR spectrometer. All power spectra show two distinct features, a broad component that is observed to scale as approximately 1/ω^{0.7-1.0}, and a prominent peak at the 13C Larmor frequency. The behavior of the broad component is consistent with an inhomogeneous distribution of Lorentzian spectra due to clustering of P1 centers, which has recently been shown to be prevalent in HPHT diamond. We develop techniques utilizing harmonics of the CPMG filter function to improve characterization of high-frequency signals, which we demonstrate on the 13C nuclear Larmor frequency. At 190 mT this is 2.04 MHz, 5.7 times higher than the CPMG modulation frequency (<357 kHz, hardware-limited). Understanding the properties of the bath allow us to either exploit it as a quantum resource or optimize decoupling performance, while also informing sample fabrication technologies. The techniques are applicable to ac magnetometry for nanoscale nuclear magnetic resonance and chemical sensing. 
    more » « less
  3. We demonstrate the operation of a rotation sensor based on the nitrogen-14 ( 14 N) nuclear spins intrinsic to nitrogen-vacancy (NV) color centers in diamond. The sensor uses optical polarization and readout of the nuclei and a radio-frequency double-quantum pulse protocol that monitors 14 N nuclear spin precession. This measurement protocol suppresses the sensitivity to temperature variations in the 14 N quadrupole splitting, and it does not require microwave pulses resonant with the NV electron spin transitions. The device was tested on a rotation platform and demonstrated a sensitivity of 4.7°/ s (13 mHz/ Hz ), with a bias stability of 0.4 °/s (1.1 mHz). 
    more » « less
  4. Nitrogen-vacancy (NV) centers in diamond are a promising platform for nanoscale NMR sensing. Despite significant progress toward using NV centers to detect and localize nuclear spins down to the single spin level, NV-based spectroscopy of individual, intact, arbitrary target molecules remains elusive. Such sensing requires that target molecules are immobilized within nanometers of NV centers with long spin coherence. The inert nature of diamond typically requires harsh functionalization techniques such as thermal annealing or plasma processing, limiting the scope of functional groups that can be attached to the surface. Solution-phase chemical methods can be readily generalized to install diverse functional groups, but they have not been widely explored for single-crystal diamond surfaces. Moreover, realizing shallow NV centers with long spin coherence times requires highly ordered single-crystal surfaces, and solution-phase functionalization has not yet been shown with such demanding conditions. In this work, we report a versatile strategy to directly functionalize C–H bonds on single-crystal diamond surfaces under ambient conditions using visible light, forming C–F, C–Cl, C–S, and C–N bonds at the surface. This method is compatible with NV centers within 10 nm of the surface with spin coherence times comparable to the state of the art. As a proof-of-principle demonstration, we use shallow ensembles of NV centers to detect nuclear spins from surface-bound functional groups. Our approach to surface functionalization opens the door to deploying NV centers as a tool for chemical sensing and single-molecule spectroscopy. 
    more » « less
  5. Radio frequency (RF) signals are frequently used in emerging quantum applications due to their spin state manipulation capability. Efficient coupling of RF signals into a particular quantum system requires the utilization of carefully designed and fabricated antennas. Nitrogen vacancy (NV) defects in diamond are commonly utilized platforms in quantum sensing experiments with the optically detected magnetic resonance (ODMR) method, where an RF antenna is an essential element. We report on the design and fabrication of high efficiency coplanar RF antennas for quantum sensing applications. Single and double ring coplanar RF antennas were designed with −37 dB experimental return loss at 2.87 GHz, the zero-field splitting frequency of the negatively charged NV defect in diamond. The efficiency of both antennas was demonstrated in magnetic field sensing experiments with NV color centers in diamond. An RF amplifier was not needed, and the 0 dB output of a standard RF signal generator was adequate to run the ODMR experiments due to the high efficiency of the RF antennas. 
    more » « less