Multipartite entangled states are an essential resource for sensing, quantum error correction, and cryptography. Color centers in solids are one of the leading platforms for quantum networking due to the availability of a nuclear spin memory that can be entangled with the optically active electronic spin through dynamical decoupling sequences. Creating electron-nuclear entangled states in these systems is a difficult task as the always-on hyperfine interactions prohibit complete isolation of the target dynamics from the unwanted spin bath. While this emergent cross-talk can be alleviated by prolonging the entanglement generation, the gate durations quickly exceed coherence times. Here we show how to prepare high-quality GHZ -like states with minimal cross-talk. We introduce the -tangling power of an evolution operator, which allows us to verify genuine all-way correlations. Using experimentally measured hyperfine parameters of an NV center spin in diamond coupled to carbon-13 lattice spins, we show how to use sequential or single-shot entangling operations to prepare GHZ -like states of up to qubits within time constraints that saturate bounds on -way correlations. We study the entanglement of mixed electron-nuclear states and develop a non-unitary -tangling power which additionally captures correlations arising from all unwanted nuclear spins. We further derive a non-unitary -tangling power which incorporates the impact of electronic dephasing errors on the -way correlations. Finally, we inspect the performance of our protocols in the presence of experimentally reported pulse errors, finding that XY decoupling sequences can lead to high-fidelity GHZ state preparation. 
                        more » 
                        « less   
                    
                            
                            Optically pumped spin polarization as a probe of many-body thermalization
                        
                    
    
            Disorder and many body interactions are known to impact transport and thermalization in competing ways, with the dominance of one or the other giving rise to fundamentally different dynamical phases. Here we investigate the spin diffusion dynamics of 13 C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers. We focus on low-abundance, strongly hyperfine-coupled nuclei, whose role in the polarization transport we expose through the integrated impact of variable radio-frequency excitation on the observable bulk 13 C magnetic resonance signal. Unexpectedly, we find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength, which we attribute to effective carbon-carbon interactions mediated by the electronic spin ensemble. In particular, observations across the full range of hyperfine couplings indicate the nuclear spin diffusion constant takes values up to two orders of magnitude greater than that expected from homo-nuclear spin couplings. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10154634
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 6
- Issue:
- 18
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaaz6986
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract 167 Er 3+ doped solids are a promising platform for quantum technology due to erbium’s telecom C-band optical transition and its long hyperfine coherence times. We experimentally study the spin Hamiltonian and dynamics of 167 Er 3+ spins in Y 2 O 3 using electron paramagnetic resonance (EPR) spectroscopy. The anisotropic electron Zeeman, hyperfine and nuclear quadrupole matrices are fitted using data obtained by X-band (9.5 GHz) EPR spectroscopy. We perform pulsed EPR spectroscopy to measure spin relaxation time T 1 and coherence time T 2 for the 3 principal axes of an anisotropic g tensor. Long electronic spin coherence time up to 24.4 μ s is measured for lowest g transition at 4 K, exceeding previously reported values at much lower temperatures. Measurements of decoherence mechanism indicates T 2 limited by spectral diffusion and instantaneous diffusion. Long spin coherence times, along with a strong anisotropic hyperfine interaction makes 167 Er 3+ :Y 2 O 3 a rich system and an excellent candidate for spin-based quantum technologies.more » « less
- 
            Abstract Optically active spin defects in solids1,2are leading candidates for quantum sensing3,4and quantum networking5,6. Recently, single spin defects were discovered in hexagonal boron nitride (hBN)7–11, a layered van der Waals (vdW) material. Owing to its two-dimensional structure, hBN allows spin defects to be positioned closer to target samples than in three-dimensional crystals, making it ideal for atomic-scale quantum sensing12, including nuclear magnetic resonance (NMR) of single molecules. However, the chemical structures of these defects7–11remain unknown and detecting a single nuclear spin with a hBN spin defect has been elusive. Here we report the creation of single spin defects in hBN using13C ion implantation and the identification of three distinct defect types based on hyperfine interactions. We observed bothS = 1/2 andS = 1 spin states within a single hBN spin defect. We demonstrated atomic-scale NMR and coherent control of individual nuclear spins in a vdW material, with a π-gate fidelity up to 99.75% at room temperature. By comparing experimental results with density functional theory (DFT) calculations, we propose chemical structures for these spin defects. Our work advances the understanding of single spin defects in hBN and provides a pathway to enhance quantum sensing using hBN spin defects with nuclear spins as quantum memories.more » « less
- 
            Dynamic nuclear polarization (DNP) is widely used to enhance solid state nuclear magnetic resonance (NMR) sensitivity. Its efficiency as a generic signal-enhancing approach for liquid state NMR, however, decays rapidly with magnetic field B 0 , unless mediated by scalar interactions arising only in exceptional cases. This has prevented a more widespread use of DNP in structural and dynamical solution NMR analyses. This study introduces a potential solution to this problem, relying on biradicals with exchange couplings J ex of the order of the electron Larmor frequency ω E . Numerical and analytical calculations show that in such J ex ≈ ± ω E cases a phenomenon akin to that occurring in chemically induced DNP (CIDNP) happens, leading to different relaxation rates for the biradical singlet and triplet states which are hyperfine-coupled to the nuclear α or β states. Microwave irradiation can then generate a transient nuclear polarization build-up with high efficiency, at all magnetic fields that are relevant in contemporary NMR, and for all rotational diffusion correlation times that occur in small- and medium-sized molecules in conventional solvents.more » « less
- 
            null (Ed.)A comprehensive 13 C nuclear magnetic resonance (NMR) approach for characterizing the location of chain ends of polyethers and polyesters, at the crystallite surface or in the amorphous layers, is presented. The OH chain ends of polyoxymethylene are labeled with 13 COO-acetyl groups and their dynamics probed by 13 C NMR with chemical shift anisotropy (CSA) recoupling. At least three-quarters of the chain ends are not mobile dangling cilia but are immobilized, exhibiting a powder pattern characteristic of the crystalline environment and fast CSA dephasing. The location and clustering of the immobilized chain ends are analyzed by spin diffusion. Fast 1 H spin diffusion from the amorphous regions shows confinement of chain ends to the crystallite surface, corroborated by fast 13 C spin exchange between chain ends. These observations confirm the principle of avoidance of density anomalies, which requires that chains terminate at the crystallite surface to stay out of the crowded interfacial layer.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    