skip to main content

Title: Probing NV and SiV charge state dynamics using high-voltage nanosecond pulse and photoluminescence spectral analysis

Nitrogen-vacancy (NV) and silicon-vacancy (SiV) color defects in diamond are promising systems for applications in quantum technology. The NV and SiV centers have multiple charge states, and their charge states have different electronic, optical and spin properties. For the NV centers, most investigations for quantum sensing applications are targeted on the negatively charged NV (NV), and it is important for the NV centers to be in the NVstate. However, it is known that the NV centers are converted to the neutrally charged state (NV0) under laser excitation. An energetically favorable charge state for the NV and SiV centers depends on their local environments. It is essential to understand and control the charge state dynamics for their quantum applications. In this work, we discuss the charge state dynamics of NV and SiV centers under high-voltage nanosecond pulse discharges. The NV and SiV centers coexist in the diamond crystal. The high-voltage pulses enable manipulating the charge states efficiently. These voltage-induced changes in charge states are probed by their photoluminescence spectral analysis. The analysis result from the present experiment shows that the high-voltage nanosecond pulses cause shifts of the chemical potential and can convert the charge states of NV and SiV centers with the transition rates of ∼MHz. This result also indicates that the major population of the SiV centers in the sample is the doubly negatively charged state (SiV2−), which is often overlooked because of its non-fluorescent and non-magnetic nature. This demonstration paves a path for a method of rapid manipulation of the NV and SiV charge states in the future.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Materials for Quantum Technology
Page Range / eLocation ID:
Article No. 035005
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    An experimentally feasible scheme for preparing the squeezed spin states in a novel spin–mechanical hybrid system is studied. The setup under consideration is realized by a single‐crystal diamond waveguide with negatively charged silicon‐vacancy (SiV) centers embedded. After studying the strain couplings between the SiV spins and the propagating phonon modes, analyses show that long‐range spin–spin interactions can be achieved under large detuning condition. Modeled as an effective one‐axis twisting Hamiltonian, these nonlinear spin–spin couplings can steer the system to the squeezed spin states in the practical situations. This proposal may have interesting applications in high‐precision metrology and quantum information processing.

    more » « less
  2. Abstract Diamond color centers have been widely studied in the field of quantum optics. The negatively charged silicon vacancy (SiV − ) center exhibits a narrow emission linewidth at the wavelength of 738 nm, a high Debye–Waller factor, and unique spin properties, making it a promising emitter for quantum information technologies, biological imaging, and sensing. In particular, nanodiamond (ND)-based SiV − centers can be heterogeneously integrated with plasmonic and photonic nanostructures and serve as in vivo biomarkers and intracellular thermometers. Out of all methods to produce NDs with SiV − centers, ion implantation offers the unique potential to create controllable numbers of color centers in preselected individual NDs. However, the formation of single color centers in NDs with this technique has not been realized. We report the creation of single SiV − centers featuring stable high-purity single-photon emission through Si implantation into NDs with an average size of ∼20 nm. We observe room temperature emission, with zero-phonon line wavelengths in the range of 730–800 nm and linewidths below 10 nm. Our results offer new opportunities for the controlled production of group-IV diamond color centers with applications in quantum photonics, sensing, and biomedicine. 
    more » « less
  3. Radio frequency (RF) signals are frequently used in emerging quantum applications due to their spin state manipulation capability. Efficient coupling of RF signals into a particular quantum system requires the utilization of carefully designed and fabricated antennas. Nitrogen vacancy (NV) defects in diamond are commonly utilized platforms in quantum sensing experiments with the optically detected magnetic resonance (ODMR) method, where an RF antenna is an essential element. We report on the design and fabrication of high efficiency coplanar RF antennas for quantum sensing applications. Single and double ring coplanar RF antennas were designed with −37 dB experimental return loss at 2.87 GHz, the zero-field splitting frequency of the negatively charged NV defect in diamond. The efficiency of both antennas was demonstrated in magnetic field sensing experiments with NV color centers in diamond. An RF amplifier was not needed, and the 0 dB output of a standard RF signal generator was adequate to run the ODMR experiments due to the high efficiency of the RF antennas. 
    more » « less
  4. The application of color centers in wide-bandgap semiconductors to nanoscale sensing and quantum information processing largely rests on our knowledge of the surrounding crystalline lattice, often obscured by the countless classes of point defects the material can host. Here, we monitor the fluorescence from a negatively charged nitrogen-vacancy (NV − ) center in diamond as we illuminate its vicinity. Cyclic charge state conversion of neighboring point defects sensitive to the excitation beam leads to a position-dependent stream of photo-generated carriers whose capture by the probe NV − leads to a fluorescence change. This “charge-to-photon” conversion scheme allows us to image other individual point defects surrounding the probe NV, including nonfluorescent “single-charge emitters” that would otherwise remain unnoticed. Given the ubiquity of color center photochromism, this strategy may likely find extensions to material systems other than diamond. 
    more » « less
  5. Abstract The nitrogen-vacancy (NV) color center in diamond has rapidly emerged as an important solid-state system for quantum information processing. Whereas individual spin registers have been used to implement small-scale diamond quantum computing, the realization of a large-scale device requires the development of an on-chip quantum bus for transporting information between distant qubits. Here, we propose a method for coherent quantum transport of an electron and its spin state between distant NV centers. Transport is achieved by the implementation of spatial stimulated adiabatic Raman passage through the optical control of the NV center charge states and the confined conduction states of a diamond nanostructure. Our models show that, for two NV centers in a diamond nanowire, high-fidelity transport can be achieved over distances of order hundreds of nanometers in timescales of order hundreds of nanoseconds. Spatial adiabatic passage is therefore a promising option for realizing an on-chip spin quantum bus. 
    more » « less