skip to main content


Title: Efficient Trajectory Generation for Robotic Systems Constrained by Contact Forces
In this work, we propose a trajectory generation method for robotic systems with contact force constraint based on optimal control and reachability analysis. Normally, the dynamics and constraints of the contact-constrained robot are nonlinear and coupled to each other. Instead of linearizing the model and constraints, we directly solve the optimal control problem to obtain the feasible state trajectory and the control input of the system. A tractable optimal control problem is formulated which is addressed by dual approaches, which are sampling-based dynamic programming and rigorous reachability analysis. The sampling-based method and Partially Observable Markov Decision Process (POMDP) are used to break down the end-to-end trajectory generation problem via sample-wise optimization in terms of given conditions. The result generates sequential pairs of subregions to be passed to reach the final goal. The reachability analysis ensures that we will find at least one trajectory starting from a given initial state and going through a sequence of subregions. The distinctive contributions of our method are to enable handling the intricate contact constraint coupled with system’s dynamics due to the reduction of computational complexity of the algorithm. We validate our method using extensive numerical simulations with a legged robot.  more » « less
Award ID(s):
1724360
NSF-PAR ID:
10122271
Author(s) / Creator(s):
Date Published:
Journal Name:
ArXiv.org
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes a method to generate feasible trajectories for robotic systems with predefined sequences of switched contacts. The proposed trajectory generation method relies on sampling-based methods, optimal control, and reach-ability analysis. In particular, the proposed method is able to quickly test whether a simplified model-based planner, such as the Time-to-Velocity-Reversal planner, provides a reachable contact location based on reachability analysis of the multi-body robot system. When the contact location is reachable, we generate a feasible trajectory to change the contact mode of the robotic system smoothly. To perform reachability analysis efficiently, we devise a method to compute forward and backward reachable sets based on element-wise optimization over a finite time horizon. Then, we compute robot trajectories by employing optimal control. The main contributions of this study are the following. Firstly, we guarantee whether planned contact locations via simplified models are feasible by the robot system. Secondly, we generate optimal trajectories subject to various constraints given a feasible contact sequence. Lastly, we improve the efficiency of computing reachable sets for a class of constrained nonlinear systems by incorporating bi-directional propagation (forward and backward). To validate our methods we perform numerical simulations applied to a humanoid robot walking. 
    more » « less
  2. We propose a locomotion framework for bipedal robots consisting of a new motion planning method, dubbed trajectory optimization for walking robots plus (TOWR+), and a new whole-body control method, dubbed implicit hierarchical whole-body controller (IHWBC). For versatility, we consider the use of a composite rigid body (CRB) model to optimize the robot’s walking behavior. The proposed CRB model considers the floating base dynamics while accounting for the effects of the heavy distal mass of humanoids using a pre-trained centroidal inertia network. TOWR+ leverages the phase-based parameterization of its precursor, TOWR, and optimizes for base and end-effectors motions, feet contact wrenches, as well as contact timing and locations without the need to solve a complementary problem or integer program. The use of IHWBC enforces unilateral contact constraints (i.e., non-slip and non-penetration constraints) and a task hierarchy through the cost function, relaxing contact constraints and providing an implicit hierarchy between tasks. This controller provides additional flexibility and smooth task and contact transitions as applied to our 10 degree-of-freedom, line-feet biped robot DRACO. In addition, we introduce a new open-source and light-weight software architecture, dubbed planning and control (PnC), that implements and combines TOWR+ and IHWBC. PnC provides modularity, versatility, and scalability so that the provided modules can be interchanged with other motion planners and whole-body controllers and tested in an end-to-end manner. In the experimental section, we first analyze the performance of TOWR+ using various bipeds. We then demonstrate balancing behaviors on the DRACO hardware using the proposed IHWBC method. Finally, we integrate TOWR+ and IHWBC and demonstrate step-and-stop behaviors on the DRACO hardware. 
    more » « less
  3. Control systems are increasingly targeted by malicious adversaries, who may inject spurious sensor measurements in order to bias the controller behavior and cause suboptimal performance or safety violations. This paper investigates the problem of tracking a reference trajectory while satisfying safety and reachability constraints in the presence of such false data injection attacks. We consider a linear, time-invariant system with additive Gaussian noise in which a subset of sensors can be compromised by an attacker, while the remaining sensors are regarded as secure. We propose a control policy in which two estimates of the system state are maintained, one based on all sensors and one based on only the secure sensors. The optimal control action based on the secure sensors alone is then computed at each time step, and the chosen control action is constrained to lie within a given distance of this value. We show that this policy can be implemented by solving a quadraticallyconstrained quadratic program at each time step. We develop a barrier function approach to choosing the parameters of our scheme in order to provide provable guarantees on safety and reachability, and derive bounds on the probability that our control policies deviate from the optimal policy when no attacker is present. Our framework is validated through numerical study. 
    more » « less
  4. Abstract

    This article focuses on the development of distributed robust model predictive control (MPC) methods for multiple connected and automated vehicles (CAVs) to ensure their safe operation in the presence of uncertainty. The proposed layered control framework includes reference trajectory generation, distributionally robust obstacle occupancy set computation, distributed state constraint set evaluation, data-driven linear model representation, and robust tube-based MPC design. To enable distributed operation among the CAVs, we present a method, which exploits sampling-based reference trajectory generation and distributed constraint set evaluation methods, that decouples the coupled collision avoidance constraint among the CAVs. This is followed by data-driven linear model representation of the nonlinear system to evaluate the convex equivalent of the nonlinear control problem. Finally, to ensure safe operation in the presence of uncertainty, this article employs a robust tube-based MPC method. For a multiple CAV lane change problem, simulation results show the efficacy of the proposed controller in terms of computational efficiency and the ability to generate safe and smooth CAV trajectories in a distributed fashion.

     
    more » « less
  5. A classic reachability problem for safety of dynamic systems is to compute the set of initial states from which the state trajectory is guaranteed to stay inside a given constraint set over a given time horizon. In this paper, we leverage existing theory of reachability analysis and risk measures to devise a risk-sensitive reachability approach for safety of stochastic dynamic systems under non-adversarial disturbances over a finite time horizon. Specifically, we first introduce the notion of a risk-sensitive safe set asa set of initial states from which the risk of large constraint violations can be reduced to a required level via a control policy, where risk is quantified using the Conditional Value-at-Risk(CVaR) measure. Second, we show how the computation of a risk-sensitive safe set can be reduced to the solution to a Markov Decision Process (MDP), where cost is assessed according to CVaR. Third, leveraging this reduction, we devise a tractable algorithm to approximate a risk-sensitive safe set and provide arguments about its correctness. Finally, we present a realistic example inspired from stormwater catchment design to demonstrate the utility of risk-sensitive reachability analysis. In particular, our approach allows a practitioner to tune the level of risk sensitivity from worst-case (which is typical for Hamilton-Jacobi reachability analysis) to risk-neutral (which is the case for stochastic reachability analysis). 
    more » « less