skip to main content

Title: Motion planning under uncertainty and sensing limitations using exploration versus exploitation
We consider a planning problem for a robot operating in an information-degraded environment. Our contribution to the state of the art is addressing this problem when robots have limited sensing capabilities, and thus only acquire information in certain locations. We therefore need a method that balances between driving the robot to the goal and toward regions to gain information (or to reduce uncertainty). We present a novel sampling-based planner (Particle Filter based Affine Quadratic Tree --- PF-AQT) that explores the environment, and plans to reach a goal with minimal uncertainty. We then use the output trajectory from PF-AQT to initialize an optimization-based planner that finds a locally optimal trajectory that minimizes control effort and uncertainty. In doing so we reap the exploration benefits of sampling-based methods and exploitation benefits of optimization-based methods for dealing with uncertainty and limited sensing capabilities of the robot. We demonstrate our results using two dynamical systems: double integrator model and a non-holonomic car-like robot.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
SUBMITTED to the IEEE Intelligent Robot Systems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of multi-robot sensor coverage, which deals with deploying a multi-robot team in an environment and optimizing the sensing quality of the overall environment. As real-world environments involve a variety of sensory information, and individual robots are limited in their available number of sensors, successful multi-robot sensor coverage requires the deployment of robots in such a way that each individual team member’s sensing quality is maximized. Additionally, because individual robots have varying complements of sensors and both robots and sensors can fail, robots must be able to adapt and adjust how they value each sensing capability in order to obtain the most complete view of the environment, even through changes in team composition. We introduce a novel formulation for sensor coverage by multi-robot teams with heterogeneous sensing capabilities that maximizes each robot's sensing quality, balancing the varying sensing capabilities of individual robots based on the overall team composition. We propose a solution based on regularized optimization that uses sparsity-inducing terms to ensure a robot team focuses on all possible event types, and which we show is proven to converge to the optimal solution. Through extensive simulation, we show that our approach is able to effectively deploy a multi-robot team to maximize the sensing quality of an environment, responding to failures in the multi-robot team more robustly than non-adaptive approaches. 
    more » « less
  2. —Robots often have to perform manipulation tasks in close proximity to people (Fig 1). As such, it is desirable to use a robot arm that has limited joint torques so as to not injure the nearby person. Unfortunately, these limited torques then limit the payload capability of the arm. By using contact with the environment, robots can expand their reachable workspace that, otherwise, would be inaccessible due to exceeding actuator torque limits. We adapt our recently developed INSAT algorithm [1] to tackle the problem of torque-limited whole arm manipulation planning through contact. INSAT requires no prior over contact mode sequence and no initial template or seed for trajectory optimization. INSAT achieves this by interleaving graph search to explore the manipulator joint configuration space with incre- mental trajectory optimizations seeded by neighborhood solutions to find a dynamically feasible trajectory through contact. We demonstrate our results on a variety of manipulators and scenarios in simulation. We also experimentally show our planner exploiting robot-environment contact for the pick and place of a payload using a Kinova Gen3 robot. In comparison to the same trajectory running in free space, we experimentally show that the utilization of bracing contacts reduces the overall torque required to execute the trajectory. 
    more » « less
  3. null (Ed.)
    Motion planning for high degree-of-freedom (DOF) robots is challenging, especially when acting in complex environments under sensing uncertainty. While there is significant work on how to plan under state uncertainty for low-DOF robots, existing methods cannot be easily translated into the high-DOF case, due to the complex geometry of the robot’s body and its environment. In this paper, we present a method that enhances optimization-based motion planners to produce robust trajectories for high-DOF robots for convex obstacles. Our approach introduces robustness into planners that are based on sequential convex programming: We reformulate each convex subproblem as a robust optimization problem that “protects” the solution against deviations due to sensing uncertainty. The parameters of the robust problem are estimated by sampling from the distribution of noisy obstacles, and performing a first-order approximation of the signed distance function. The original merit function is updated to account for the new costs of the robust formulation at every step. The effectiveness of our approach is demonstrated on two simulated experiments that involve a full body square robot, that moves in randomly generated scenes, and a 7-DOF Fetch robot, performing tabletop operations. The results show nearly zero probability of collision for a reasonable range of the noise parameters for Gaussian and Uniform uncertainty. 
    more » « less
  4. This paper describes a hierarchical solution consisting of a multi-phase planner and a low-level safe controller to jointly solve the safe navigation problem in crowded, dynamic, and uncertain environments. The planner employs dynamic gap analysis and trajectory optimization to achieve collision avoidance with respect to the predicted trajectories of dynamic agents within the sensing and planning horizon and with robustness to agent uncertainty. To address uncertainty over the planning horizon and real-time safety, a fast reactive safe set algorithm (SSA) is adopted, which monitors and modifies the unsafe control during trajectory tracking. Compared to other existing methods, our approach offers theoretical guarantees of safety and achieves collision-free navigation with higher probability in uncertain environments, as demonstrated in scenarios with 20 and 50 dynamic agents. 
    more » « less
  5. This paper proposes a method to generate feasible trajectories for robotic systems with predefined sequences of switched contacts. The proposed trajectory generation method relies on sampling-based methods, optimal control, and reach-ability analysis. In particular, the proposed method is able to quickly test whether a simplified model-based planner, such as the Time-to-Velocity-Reversal planner, provides a reachable contact location based on reachability analysis of the multi-body robot system. When the contact location is reachable, we generate a feasible trajectory to change the contact mode of the robotic system smoothly. To perform reachability analysis efficiently, we devise a method to compute forward and backward reachable sets based on element-wise optimization over a finite time horizon. Then, we compute robot trajectories by employing optimal control. The main contributions of this study are the following. Firstly, we guarantee whether planned contact locations via simplified models are feasible by the robot system. Secondly, we generate optimal trajectories subject to various constraints given a feasible contact sequence. Lastly, we improve the efficiency of computing reachable sets for a class of constrained nonlinear systems by incorporating bi-directional propagation (forward and backward). To validate our methods we perform numerical simulations applied to a humanoid robot walking. 
    more » « less