skip to main content


Title: Priorities and Interactions of Sustainable Development Goals (SDGs) with Focus on Wetlands
Wetlands are often vital physical and social components of a country’s natural capital, as well as providers of ecosystem services to local and national communities. We performed a network analysis to prioritize Sustainable Development Goal (SDG) targets for sustainable development in iconic wetlands and wetlandscapes around the world. The analysis was based on the information and perceptions on 45 wetlandscapes worldwide by 49 wetland researchers of the Global Wetland Ecohydrological Network (GWEN). We identified three 2030 Agenda targets of high priority across the wetlandscapes needed to achieve sustainable development: Target 6.3—“Improve water quality”; 2.4—“Sustainable food production”; and 12.2—“Sustainable management of resources”. Moreover, we found specific feedback mechanisms and synergies between SDG targets in the context of wetlands. The most consistent reinforcing interactions were the influence of Target 12.2 on 8.4—“Efficient resource consumption”; and that of Target 6.3 on 12.2. The wetlandscapes could be differentiated in four bundles of distinctive priority SDG-targets: “Basic human needs”, “Sustainable tourism”, “Environmental impact in urban wetlands”, and “Improving and conserving environment”. In general, we find that the SDG groups, targets, and interactions stress that maintaining good water quality and a “wise use” of wetlandscapes are vital to attaining sustainable development within these sensitive ecosystems.  more » « less
Award ID(s):
1832229 1237517
NSF-PAR ID:
10122359
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Water
Volume:
11
Issue:
3
ISSN:
2073-4441
Page Range / eLocation ID:
619
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wetlands play an important role in watershed eco‐hydrology. The occurrence and distribution of wetlands in a landscape are affected by the surface topography and the hydro‐climatic conditions. Here, we propose a minimalist probabilistic approach to describe the dynamic behaviour of wetlandscape attributes, including number of inundated wetlands and the statistical properties of wetland stage, surface area, perimeter, and storage volume. The method relies on two major assumptions: (a) wetland bottom hydrologic resistance is negligible; and (b) groundwater level is parallel to the mean terrain elevation. The approach links the number ofinundatedwetlands (depressions with water) to the distribution of wetland bottoms and divides, and the position of the shallow water table. We compared the wetlandscape attribute dynamics estimated from the probabilistic approach to those determined from a parsimonious hydrologic model for groundwater‐dominated wetlands. We test the reliability of the assumptions of both models using data from six cypress dome wetlands in the Green Swamp Wildlife Management Area, Florida. The results of the hydrologic model for groundwater‐dominated wetlands showed that the number of inundated wetlands has a unimodal dependence on the groundwater level, as predicted by the probabilistic approach. The proposed models provide a quantitative basis to understand the physical processes that drive the spatiotemporal hydrologic dynamics in wetlandscapes impacted by shallow groundwater fluctuations. Emergent patterns in wetlandscape hydrologic dynamics are of key importance not only for the conservation of water resources, but also for a wide range of eco‐hydrological services provided by connectivity between wetlands and their surrounding uplands.

     
    more » « less
  2. Despite decades of policy that strives to reduce nutrient and sediment export from agricultural fields, surface water quality in intensively managed agricultural landscapes remains highly degraded. Recent analyses show that current conservation efforts are not sufficient to reverse widespread water degradation in Midwestern agricultural systems. Intensifying row crop agriculture and increasing climate pressure require a more integrated approach to water quality management that addresses diverse sources of nutrients and sediment and off-field mitigation actions. We used multiobjective optimization analysis and integrated three biophysical models to evaluate the cost-effectiveness of alternative portfolios of watershed management practices at achieving nitrate and suspended sediment reduction goals in an agricultural basin of the Upper Midwestern United States. Integrating watershed-scale models enabled the inclusion of near-channel management alongside more typical field management and thus directly the comparison of cost-effectiveness across portfolios. The optimization analysis revealed that fluvial wetlands (i.e., wide, slow-flowing, vegetated water bodies within the riverine corridor) are the single-most cost-effective management action to reduce both nitrate and sediment loads and will be essential for meeting moderate to aggressive water quality targets. Although highly cost-effective, wetland construction was costly compared to other practices, and it was not selected in portfolios at low investment levels. Wetland performance was sensitive to placement, emphasizing the importance of watershed scale planning to realize potential benefits of wetland restorations. We conclude that extensive interagency cooperation and coordination at a watershed scale is required to achieve substantial, economically viable improvements in water quality under intensive row crop agricultural production.

     
    more » « less
  3. Abstract

    Wetlands provide valuable hydrological, ecological, and biogeochemical functions, both alone and in combination with other elements comprising the wetlandscape. Understanding the processes and mechanisms that drive wetlandscape functions, as well as their sensitivity to natural and man‐made alterations, requires a sound physical understanding of wetland hydrodynamics. Here, we develop and apply a single reservoir hydrologic model to a low‐relief karst wetlandscape in southwest Florida (≈103 km2of Big Cypress National Preserve) using precipitationPand potential evapotranspirationPETas climatic drivers. This simple approach captures the dynamics of storage for individual wetlands across the entire wetlandscape and accurately predicts landscape discharge. Key model insights are the importance of depth‐dependent extinction of evapotranspirationETand the negligible effects of depth‐dependent specific yield, the effects of which are diluted by landscape relief. We identify three phases of the wetlandscape hydrological regime: dry, wet‐stagnant, and wet‐flowing. The model allowed a simple steady‐state analysis, which demonstrated the sudden seasonal shift between wet‐stagnant and wet‐flowing states, indicating a consistent threshold atP ≈ PET. Notably, stage data from any single wetland appears sufficient for accurate whole‐landscape discharge prediction because of the relative homogeneity in timing and duration of local wetland hydrologic connectivity in this landscape. We also show that this method will be transferable to other wetlandscapes, where individual storage elements respond hydrologically synchronously, whereas model performance is expected to deteriorate for hydrologically more heterogeneous wetlandscapes.

     
    more » « less
  4. Abstract

    Thousands of small wetland depression features (cypress domes) dot the low‐relief karst of Big Cypress National Preserve (BICY) in South Florida, USA. We hypothesized that these wetland depressions are organized in a regular pattern, which is atypical of wetlandscapes elsewhere. Regular patterning implies the existence of coupled feedbacks operating at different spatial scales, with local wetland depression expansion (facilitation via karst dissolution) limited by competition among adjacent depressions for finite water resources (inhibition). We sought to test the hypothesis that wetlands in BICY exhibit regular patterning, and to quantify pattern properties to evaluate competing genesis mechanisms. We tested four predictions about landscape structure and geometry using high‐resolution Light Detection and Ranging elevation data from six 2.25‐km2domains across BICY. Specifically, we predicted (1) feature overdispersion resulting from competition between adjacent basins; (2) truncated wetland area distributions due to growth inhibition feedbacks; (3) periodicity in surface elevation indicating a characteristic pattern wavelength; and (4) elevation bimodality indicating distinct upland and wetland states. All four predictions were strongly supported. Depressions were significantly overdispersed and efficiently fill the landscape, generating hexagonal patterning. Wetland areas followed truncated power law scaling, indicating incremental constraints on basin expansion, in contrast to depression areas elsewhere. Variogram and radial spectrum analyses revealed clear periodicity (~150‐ to 250‐m wavelength) in surface elevations. Finally, surface elevations were consistently bimodal with elevation divergence of 10 to 40 cm. Regular patterning of wetland depressions across BICY is clear, implying long‐term biogeomorphic control on landform structure in this karst landscape.

     
    more » « less
  5. Abstract Inundation area is a major control on the ecosystem services provisioned by geographically isolated wetlands. Despite its importance, there has not been any comprehensive study to map out the seasonal inundation characteristics of geographically isolated wetlands over the continental United States (CONUS). This study fills the aforementioned gap by evaluating the seasonality or the long-term intra-annual variations of wetland inundation in ten wetlandscapes across the CONUS. We also assess the consistency of these intra-annual variations. Finally, we evaluate the extent to which the seasonality can be explained based on widely available hydrologic fluxes. Our findings highlight significant intra-annual variations of inundation within most wetlandscapes, with a standard deviation of the long-term averaged monthly inundation area ranging from 15% to 151% of its mean across the wetlandscapes. Stark differences in inundation seasonality are observed between snow-affected vs. rain-fed wetlandscapes. The former usually shows the maximum monthly inundation in April following spring snowmelt (SM), while the latter experiences the maximum in February. Although the magnitude of inundation fraction has changed over time in several wetlandscapes, the seasonality of these wetlands shows remarkable constancy. Overall, commonly available regional hydrologic fluxes (e.g. rainfall, SM, and evapotranspiration) are found to be able to explain the inundation seasonality at wetlandscape scale with determination coefficients greater than 0.57 in 7 out of 10 wetlandscapes. Our methodology and presented results may be used to map inundation seasonality and consequently account for its impact on wetland functions. 
    more » « less