skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: DSP Linearization for Millimeter-Wave All-Digital Receiver Array with Low-Resolution ADCs
Millimeter-wave (mmWave) communications and cell densification are the key techniques for the future evolution of cellular systems beyond 5G. Although the current mmWave radio designs are focused on hybrid digital and analog receiver array architectures, the fully digital architecture is an appealing option due to its flexibility and support for multi-user multiple-input multiple-output (MIMO). In order to achieve reasonable power consumption and hardware cost, the specifications of analog circuits are expected to be compromised, including the resolution of analog-to-digital converter (ADC) and the linearity of radio-frequency (RF) front end. Although the state-of-the-art studies focus on the ADC, the nonlinearity can also lead to severe system performance degradation when strong input signals introduce inter-modulation distortion (IMD). The impact of RF nonlinearity becomes more severe with densely deployed mmWave cells since signal sources closer to the receiver array are more likely to occur. In this work, we design and analyze the digital IMD compensation algorithm, and study the relaxation of the required linearity in the RF-chain. We propose novel algorithms that jointly process digitized samples to recover amplifier saturation, and relies on beam space operation which reduces the computational complexity as compared to per-antenna IMD compensation.  more » « less
Award ID(s):
1718742
PAR ID:
10122374
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. All-digital basestation (BS) architectures for millimeter-wave (mmWave) massive multi-user multiple-input multiple-output (MU-MIMO), which equip each radio-frequency chain with dedicated data converters, have advantages in spectral efficiency, flexibility, and baseband-processing simplicity over hybrid analog-digital solutions. For all-digital architectures to be competitive with hybrid solutions in terms of power consumption, novel signal-processing methods and baseband architectures are necessary. In this paper, we demonstrate that adapting the resolution of the analog-to-digital converters (ADCs) and spatial equalizer of an all-digital system to the communication scenario (e.g., the number of users, modulation scheme, and propagation conditions) enables orders-of-magnitude power savings for realistic mmWave channels. For example, for a 256-BS-antenna 16-user system supporting 1 GHz bandwidth, a traditional baseline architecture designed for a 64-user worst-case scenario would consume 23 W in 28 nm CMOS for the ADC array and the spatial equalizer, whereas a resolution-adaptive architecture is able to reduce the power consumption by 6.7×. 
    more » « less
  2. The highly sparse nature of propagation channels and the restricted use of radio frequency (RF) chains at transceivers limit the performance of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems. Introducing reconfigurable antennas to mmWave can offer an additional degree of freedom on designing mmWave MIMO systems. This paper provides a theoretical framework for studying the mmWave MIMO with reconfigurable antennas. We present an architecture of reconfigurable mmWave MIMO with beamspace hybrid analog-digital beamformers and reconfigurable antennas at both the transmitter and the receiver. We show that employing reconfigurable antennas can provide throughput gain for the mmWave MIMO. We derive the expression for the average throughput gain of using reconfigurable antennas, and further simplify the expression by considering the case of large number of reconfiguration states. In addition, we propose a low-complexity algorithm for the reconfiguration state and beam selection, which achieves nearly the same throughput performance as the optimal selection of reconfiguration state and beams by exhaustive search. 
    more » « less
  3. null (Ed.)
    This paper discusses early results associated with a fully-digital direct-conversion array receiver at 28 GHz. The proposed receiver makes use of commercial off-the-shelf (COTS) electronics, including the receiver chain. The design consists of a custom 28 GHz patch antenna sub-array providing gain in the elevation plane, with azimuthal plane beamforming provided by real-time digital signal processing (DSP) algorithms running on a Xilinx Radio Frequency System on Chip (RF SoC). The proposed array receiver employs element-wise fully-digital array processing that supports ADC sample rates up to 2 GS/second and up to 1 GHz of operating bandwidth per antenna. The RF mixed-signal data conversion circuits and DSP algorithms operate on a single-chip RFSoC solution installed on the Xilinx ZCU1275 prototyping platform. 
    more » « less
  4. All-digital millimeter-wave (mmWave) massive multi-user multiple-input multiple-output (MU-MIMO) receivers enable extreme data rates but require high power consumption. In order to reduce power consumption, this paper presents the first resolution-adaptive all-digital receiver ASIC that is able to adjust the resolution of the data-converters and baseband-processing engine to the instantaneous communication scenario. The scalable 32-antenna, 65 nm CMOS receiver occupies a total area of 8 mm 2 and integrates analog-to-digital converters (ADCs) with programmable gain and resolution, beamspace channel estimation, and a resolution-adaptive processing-in-memory spatial equalizer. With 6-bit ADC samples and a 4-bit spatial equalizer, our ASIC achieves a throughput of 9.98 Gb/s while being at least 2× more energy-efficient than state-of-the-art designs. 
    more » « less
  5. A 4-channel code-multiplexed digital receiver is presented for multiple-input-multiple-output (MIMO) applications targeting 5G millimeter-wave (mm-Wave) communications. The receiver employs a code-multiplexing (CM) topology where multiple channels are encoded with unique orthogonal Walsh­ Hadamard codes and multiplexed into a single-channel for digitization. This approach overcomes the bottleneck of hardware complexity, cost, and power consumption in traditional multiplexing topologies by employing a single wideband analog-to-digital converter (ADC) to serve several channels. The article presents an end-to-end testbed to demonstrate the effectiveness of the proposed Code-Multiplexed Digital Receiver (CMDR) that consists of l ) ultrawideband (UWB) tightly-coupled dipole array (TCDA), 2) a custom-designed encoder circuit board (ECB), and 3) a Radio-Frequency System-on-Chip (RFSoC) field­ programmable gate array (FPGA) for encoding and decoding. The code sequences were generated at a maximum clock frequency of 400 MHz. Extensive experimental measurements were performed and test results were validated using performance metrics such as normalized mean square error (NMSE) and adjacent channel interference (ACI). Test results showed ACI of >20 dB, NMSE = -24.592 dB and little or no degradation in signal-to-noise ratio (SNR). To the best of our knowledge, this is the highest clock frequency and ACI value for hardware validation of channel multiplexing scheme reported in the literature. 
    more » « less