skip to main content

Title: Synapse-Aware Skeleton Generation for Neural Circuits
Reconstructed terabyte and petabyte electron microscopy image volumes contain fully-segmented neurons at resolutions fine enough to identify every synaptic connection. After manual or automatic reconstruction, neuroscientists want to extract wiring diagrams and connectivity information to analyze the data at a higher level. Despite significant advances in image acquisition, neuron segmentation, and synapse detection techniques, the extracted wiring diagrams are still quite coarse, and often do not take into account the wealth of information in the densely reconstructed volumes. We propose a synapse-aware skeleton generation strategy to transform the reconstructed volumes into an information-rich yet abstract format on which neuroscientists can perform biological analysis and run simulations. Our method extends existing topological thinning strategies and guarantees a one-to-one correspondence between skeleton endpoints and synapses while simultaneously generating vital geometric statistics on the neuronal processes. We demonstrate our results on three large-scale connectomic datasets and compare against current state-of-the-art skeletonization algorithms.
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Medical Image Computing and Computer Assisted Intervention
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Following significant advances in image acquisition, synapse detection, and neuronal segmentation in connectomics, researchers have extracted an increasingly diverse set of wiring diagrams from brain tissue. Neuroscientists frequently represent these wiring diagrams as graphs with nodes corresponding to a single neuron and edges indicating synaptic connectivity. The edges can contain “colors” or “labels”, indicating excitatory versus inhibitory connections, among other things. By representing the wiring diagram as a graph, we can begin to identify motifs, the frequently occurring subgraphs that correspond to specific biological functions. Most analyses on these wiring diagrams have focused on hypothesized motifs—those we expect to find. However, one of the goals of connectomics is to identify biologically-significant motifs that we did not previously hypothesize. To identify these structures, we need large-scale subgraph enumeration to find the frequencies of all unique motifs. Exact subgraph enumeration is a computationally expensive task, particularly in the edge-dense wiring diagrams. Furthermore, most existing methods do not differentiate between types of edges which can significantly affect the function of a motif. We propose a parallel, general-purpose subgraph enumeration strategy to count motifs in the connectome. Next, we introduce a divide-and-conquer community-based subgraph enumeration strategy that allows for enumeration per brain region.more »Lastly, we allow for differentiation of edges by types to better reflect the underlying biological properties of the graph. We demonstrate our results on eleven connectomes and publish for future analyses extensive overviews for the 26 trillion subgraphs enumerated that required approximately 9.25 years of computation time.« less
  2. As connectomic datasets exceed hundreds of terabytes in size, accurate and efficient skeleton generation of the label volumes has evolved into a critical component of the computation pipeline used for analysis, evaluation, visualization, and error correction. We propose a novel topological thinning strategy that uses biological constraints to produce accurate centerlines from segmented neuronal volumes while still maintaining bio- logically relevant properties. Current methods are either agnostic to the underlying biology, have non-linear running times as a function of the number of input voxels, or both. First, we eliminate from the input segmentation biologically-infeasible bubbles, pockets of voxels incorrectly labeled within a neuron, to improve segmentation accuracy, allow for more accurate centerlines, and increase processing speed. Next, a Convolutional Neural Network (CNN) detects cell bodies from the input segmentation, allowing us to anchor our skeletons to the somata. Lastly, a synapse-aware topological thinning approach produces expressive skeletons for each neuron with a nearly one-to-one correspondence between endpoints and synapses. We simultaneously estimate geometric properties of neurite width and geodesic distance between synapse and cell body, improving accuracy by 47.5% and 62.8% over baseline methods. We separate the skeletonization process into a series of computation steps, leveraging data-parallel strategies to increasemore »throughput significantly. We demonstrate our results on over 1250 neurons and neuron fragments from three different species, processing over one million voxels per second per CPU with linear scalability.« less
  3. A connectivity graph of neurons at the resolution of single synapses provides scientists with a tool for understanding the nervous system in health and disease. Recent advances in automatic image segmentation and synapse prediction in electron microscopy (EM) datasets of the brain have made reconstructions of neurons possible at the nanometer scale. However, automatic segmentation sometimes struggles to segment large neurons correctly, requiring human effort to proofread its output. General proofreading involves inspecting large volumes to correct segmentation errors at the pixel level, a visually intensive and time-consuming process. This paper presents the design and implementation of an analytics framework that streamlines proofreading, focusing on connectivity-related errors. We accomplish this with automated likely-error detection and synapse clustering that drives the proofreading effort with highly interactive 3D visualizations. In particular, our strategy centers on proofreading the local circuit of a single cell to ensure a basic level of completeness. We demonstrate our framework’s utility with a user study and report quantitative and subjective feedback from our users. Overall, users find the framework more efficient for proofreading, understanding evolving graphs, and sharing error correction strategies.
  4. Studying dynamic-functional connectivity (DFC) using fMRI data of the brain gives much richer information to neuroscientists than studying the brain as a static entity. Mining of dynamic connectivity graphs from these brain studies can be used to classify diseased versus healthy brains. However, constructing and mining dynamic-functional connectivity graphs of the brain can be time consuming due to size of fMRI data. In this paper, we propose a highly scalable GPU-based parallel algorithm called GPU-DFC for computing dynamic-functional connectivity of fMRI data both at region and voxel level. Our algorithm exploits sparsification of correlation matrix and stores them in CSR format. Further reduction in the correlation matrix is achieved by parallel decomposition techniques. Our GPU-DFC algorithm achieves 2 times speed-up for computing dynamic correlations compared to state-of-the-art GPU-based techniques and more than 40 times compared to a sequential CPU version. In terms of storage, our proposed matrix decomposition technique reduces the size of correlation matrices more than 100 times. Reconstructed values from decomposed matrices show comparable results as compared to the correlations with original data. The implemented code is available as GPL license on GitHub portal of our lab (
  5. In this article, a compressive sensing (CS) reconstruction algorithm is applied to data acquired from a nodding multi-beam Lidar system following a Lissajous-like trajectory. Multi-beam Lidar systems provide 3D depth information of the environment for applications in robotics, but the vertical resolution of these devices may be insufficient to identify objects, especially when the object is small and/or far from the robot. In order to overcome this issue, the Lidar can be nodded in order to obtain higher vertical resolution with the side-effect of increased scan time, especially when raster scan patterns are used. Such systems, especially when combined with nodding, also yield large volumes of data which may be difficult to store and mange on resource constrained systems. Using Lissajous-like nodding trajectories allows for the trade-off between scan time and horizontal and vertical resolutions through the choice of scan parameters. These patterns also naturally sub-sample the imaged area and the data can be further reduced by simply not collecting each data point along the trajectory. The final depth image must then be reconstructed from the sub-sampled data. In this article, a CS reconstruction algorithm is applied to data collected during a fast and therefore low-resolution Lissajous-like scan. Experiments andmore »simulations show the feasibility of this method and compare its results to images produced from simple nearest-neighbor interpolation.« less