skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Glaciogenic sedimentary infill of late Paleozoic glacial paleovalleys of the Kaokoveld, Northwest Namibia
In the Kaokoveld (NW Namibia), several modern river valleys are exhuming late Paleozoic glacial valleys cut onto Precambrian fold belts. They represent one of the most prominent late Paleozoic exhumed glacial landscapes and are widely considered to have been carved by outlet glaciers that drained the Windhoek Ice Sheet and fed marginal lobes that flowed into the Paraná Basin, southern Brazil. No detailed research exists on the glacial sedimentary fill of these valleys. Two study sites in the Khumib and Kunene rivers catchment were analyzed for depositional environments, glacial cyclicity, and relative timing of deposition recorded in the Dwyka Group. The Dwyka strata are confined within these valleys and dip up to 30 degrees outward away from the valley walls becoming horizontal near the axis of the valleys. Sedimentary units include: 1) thick successions of diamictite- and conglomerate-bearing clinoforms containing boulders up to 2 m in diameter generated by sediment-laden meltwater, sediment gravity flows and iceberg rainout with intraformational grooved surfaces generated by coeval iceberg scour; 2) laminated, fine-grained sandstone/mudstone rhythmites with dropstones, dump structures, interbedded rainout diamictites and sole mark-bearing finegrained massive to current-rippled sandstones (turbidites). These units were deposited in the distal zones of a subaqueous outwash system; 3) folded and sheared intervals of the above facies interpreted as having been deformed subglacially and in ice-marginal settings during ice advance. Ice advance is indicated by the occurrence of overlying erosional based conglomerates interpreted as outwash deposits; and 4) a capping succession of fine-grained massive, horizontally laminated, and current-rippled sandstones with sole marks and laminated rhythmites with convolute bedding interpreted as turbidity flow deposits generated following glaciers retreat. The stacking of these units is consistent with the occurrence of oscillating margins of temperate, tidewater termini of fast flowing ice with deposition occurring in morainal banks or grounding-zone wedges during at least two glacial advance-retread cycles. The morphology of the valleys and their sedimentary infill suggest that they were shaped by ice streams during the Late Paleozoic Ice Age.  more » « less
Award ID(s):
1729219
PAR ID:
10122564
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geological Society of America Abstracts with Programs
Volume:
51
Issue:
5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Fjords are glacially carved estuaries that profoundly influence ice-sheet stability by draining and ablating ice. Although abundant on modern high-latitude continental shelves, fjord-network morphologies have never been identified in Earth’s pre-Cenozoic glacial epochs, hindering our ability to constrain ancient ice-sheet dynamics. We show that U-shaped valleys in northwestern Namibia cut during the late Paleozoic ice age (LPIA, ca. 300 Ma), Earth’s penultimate icehouse, represent intact fjord-network morphologies. This preserved glacial morphology and its sedimentary fill permit a reconstruction of paleo-ice thicknesses, glacial dynamics, and resulting glacio-isostatic adjustment. Glaciation in this region was initially characterized by an acme phase, which saw an extensive ice sheet (1.7 km thick) covering the region, followed by a waning phase characterized by 100-m-thick, topographically constrained outlet glaciers that shrank, leading to glacial demise. Our findings demonstrate that both a large ice sheet and highland glaciers existed over northwestern Namibia at different times during the LPIA. The fjords likely played a pivotal role in glacier dynamics and climate regulation, serving as hotspots for organic carbon sequestration. Aside from the present-day arid climate, northwestern Namibia exhibits a geomorphology virtually unchanged since the LPIA, permitting unique insight into this icehouse. 
    more » « less
  2. Glacial and periglacial sediments and landforms record the chronology of glaciation and amount of Pleistocene erosion during colder periods that added substantially to global sediment budgets and contributed to the global CO2 cycle. The now-drained glacial Lake Devlin, dammed in a Front Range tributary valley by a glacier in the North Branch of Boulder Creek (Colorado, USA) preserves an important sedimentary archive of the ca. 32−14 ka Pinedale glaciation, recording both paleoclimate information and an integrated measure of glacial and periglacial erosion rates over a full glacial cycle. Despite rapid erosion of fine-grained deposits after the lake drained, most sediment generated during Pinedale time remains as legacy deposits in the catchment. Geomorphic evidence and dating of glaciolacustrine sediment from surface exposures demonstrate that the ca. 30 ka Pinedale glacial advance was nearly as extensive as the local Late Glacial Maximum at ca. 20 ka. Sedimentary archives dated by 14C, optically stimulated luminescence, and cosmogenic nuclides extend earlier studies (Madole et al., 1973) of pollen and magnetic susceptibility (MS) in cores from the glaciolacustrine deposits of Lake Devlin and of Pinedale climate. Records suggest short-term warming and biotic change at ca. 15 ka after ∼14 kyr of cold, dry conditions punctuated by MS peaks at ca. 26.5 ka, 20 ka, and 16.5 ka. Lake Devlin drained catastrophically after ca. 14 ka, millennia after ice had retreated upvalley from the lateral moraine that dammed the lake. Sediment production during the Pinedale was equivalent to a periglacial and glacial erosion rate of ∼70 mm kyr−1, several times higher than long-term rates in the adjacent Front Range, but much lower than rates measured where modern glaciers are eroding weak bedrock in zones of rapid rock uplift, such as SSE Alaska, USA. Data from the Lake Devlin basin contribute to contemporary discussions of how glacial erosion influences the global CO2 cycle. 
    more » « less
  3. Analyses of rock samples collected during recent fieldwork in the Ombilin Basin of west-central Sumatra, Indonesia yielded pollen data that constrain the age and depositional setting of associated plant macrofossil and vertebrate fossil-bearing units in the Sangkarewang and Sawahlunto formations. Articulated fish and plant fossils were recovered from bedding plane surfaces of fissile, laminated shales in the Sangkarewang Formation that are interpreted to have been deposited in an actively-subsiding, deep, anoxic lake. The overlying Talawi Member of the Sawahlunto Formation records stratigraphy consistent with deposition in a segue to marginal lacustrine marsh and poorly-drained paleosol settings. Interbedded carbonate mudstone / wackestone and lignitic claystone units in the basal Talawi Member preserve scattered, disarticulated fossils of fish, reptiles, an amphibian, and one mammal tooth. These beds grade into a heterolithic succession of fine-grained clastic rock, with coal interbeds likely deposited in a coastal alluvial setting. Marine influences in this interval are indicated by the nature of physical sedimentary structures in several zones, the presence of trace fossils such as Diplocraterion, Cylindrichnus and Teichichnus, and the occurrence of foraminiferal linings, dinocysts and other palynomorphs indicative of mangrove and back-mangrove settings. Palynological analysis indicates that the most probable age of the Sawahlunto Formation ranges from the middle to late Eocene, with a possible extension from the middle Eocene to the early Oligocene. 
    more » « less
  4. The location, longevity, and geographic extent of late Paleozoic ice centers in west-central Gondwana remain ambiguous. Paleovalleys on the Rio Grande do Sul Shield of southernmost Brazil have previously been interpreted as fjords carved by outlet glaciers that originated in Africa and emptied into the Paraná Basin (Brazil). In this study, the sedimentology, stratigraphy, and provenance of sediments infilling two such paleovalleys (the Mariana Pimentel and Leão paleovalleys) were examined in order to test the hypothesis that an ice center over present day Namibia drained across southernmost Brazil during the Carboniferous and Permian. Contrary to previous findings, the facies assemblage from within the paleovalleys is inconsistent with a fjord setting and no clear evidence for glaciation was observed. The facies show a transition from a non-glacial lacustrine/estuarine environment, to a fluvial-dominated setting, and finally to a restricted marine/estuarine environment. Detrital zircon results present a single population of Neoproterozoic ages (c. 800–550 Ma) from the paleovalley fill that matches the ages of underlying igneous and metamorphic basement (Dom Feliciano Belt) and is incongruent with African sources that contain abundant older (Mesoproterozoic, Paleoproterozoic, and Archean) zircons. Furthermore, results suggest that the formation of the paleovalleys and the deposition of their fill were controlled by the reactivation of Neoproterozoic basement structures during the Carboniferous and Permian. The lack of evidence for glaciation in these paleovalleys highlights the need for detailed studies of supposed late Paleozoic glacial deposits. These results are supportive of the hypothesis that well-established glacial sediments on the Rio Grande do Sul Shield (southern margin of the Paraná Basin) may be the product of a separate lobe extending north across Uruguay, rather than a single, massive ice sheet draining west from Africa. 
    more » « less
  5. null (Ed.)
    Abstract Carboniferous–Permian strata in basins within the Central Pangean Mountains in France archive regional paleoequatorial climate during a unique interval in geological history (Pangea assembly, ice-age collapse, megamonsoon inception). The voluminous (∼1.5 km) succession of exclusively fine-grained red beds that comprises the Permian Salagou Formation (Lodève Basin, France) has long been interpreted to record either lacustrine or fluvial deposition, primarily based on a local emphasis of subaqueous features in the upper ∼25% of the section. In contrast, data presented here indicate that the lower-middle Salagou Formation is dominated by up to 15-m-thick beds of internally massive red mudstone with abundant pedogenic features (microscale) and no evidence of channeling. Up-section, limited occurrences of ripple and hummocky cross-stratification, and mudcracks record the intermittent influence of shallow water, but with no channeling nor units with grain sizes exceeding coarse silt. These data suggest that the most parsimonious interpretation for the Salagou Formation involves eolian transport of the sediment and ultimate deposition as loess in shallow, ephemeral lacustrine environments. Provenance analyses of the Salagou Formation indicate coarse-grained protoliths and, together with geochemical proxies (chemical index of alteration [CIA] and τNa) that correspond respectively to a low degree of chemical weathering and a mean annual temperature of ∼4 °C, suggest that silt generation in this case is most consistent with cold-weathering (glacial and associated periglacial) processes in the Variscan highlands. Together with previous studies that detailed voluminous Permian loess in western equatorial Pangea, this work shows a globally unique distribution of dust at low latitudes that can be linked either directly to glaciated alpine terranes or to reworked and deflated deposits of other types (e.g., fluvial outwash) where fine-grained material was originally generated from glacial grinding in alpine systems. These results further support a revised model for early Permian climate, in which extratropical ice sheets coexisted with a semiarid tropics that may have hosted significant ice at moderate elevation. 
    more » « less