skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Origins of ultralow thermal conductivity in 1-2-1-4 quaternary selenides
Engineering the thermal properties in solids is important for both fundamental physics ( e.g. electric and phonon transport) and device applications ( e.g. thermal insulating coating, thermoelectrics). In this paper, we report low thermal transport properties of four selenide compounds (BaAg 2 SnSe 4 , BaCu 2 GeSe 4 , BaCu 2 SnSe 4 and SrCu 2 GeSe 4 ) with experimentally-measured thermal conductivity as low as 0.31 ± 0.03 W m −1 K −1 at 673 K for BaAg 2 SnSe 4 . Density functional theory calculations predict κ < 0.3 W m −1 K −1 for BaAg 2 SnSe 4 due to scattering from weakly-bonded Ag–Ag dimers. Defect calculations suggest that achieving high hole doping levels in these materials could be challenging due to monovalent ( e.g. , Ag) interstitials acting as hole killers, resulting in overall low electrical conductivity in these compounds.  more » « less
Award ID(s):
1729594 1729487
PAR ID:
10122578
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
7
Issue:
6
ISSN:
2050-7488
Page Range / eLocation ID:
2589 to 2596
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Superionic conductors, includingACrX2(A=Ag, Cu; X = S, Se) compounds, have attracted attention due to their low lattice thermal conductivity and high ionic conductivity. These properties are driven by structural characteristics such as anharmonicity, soft bonding, and disorder, which enhance both fast ion transport and thermal resistance. In the present study, we investigate the impact of various factors (e.g.A-site disorder, microstructure, speed of sound and chemical composition) on the thermal conductivity of the compounds CuCrS2, CuCrSe2, AgCrS2and AgCrSe2. The samples were synthesized using solid state reaction, ball milling and subsequent spark plasma sintering, and thermal diffusivity, electrical resistivity, Hall coefficients and Seebeck coefficients were measured as a function of temperature. The selenides were found to behave as degenerate semiconductors, with reasonable thermoelectric figure of merit (up to 0.79 in CuCrSe2), while the sulfides behaved as non-degenerate semiconductors with high electrical resistivity. At room temperature, all samples are in the ordered phase and show low lattice thermal conductivity ranging from 0.60 W m−1-K in AgCrSe2to 1.1 W m−1-K in CuCrSe2. Little reduction in lattice thermal conductivity was observed in the high-temperature phase, despite the increased disorder on the cation site and the onset of superionic conductivity. This suggests that the low lattice thermal conductivity inACrX2compounds is an inherent property of the crystal structure, caused by anharmonic bonding and diffuson dominated transport. 
    more » « less
  2. null (Ed.)
    Accurate density functional theory calculations of the interrelated properties of thermoelectric materials entail high computational cost, especially as crystal structures increase in complexity and size. New methods involving ab initio scattering and transport (AMSET) and compressive sensing lattice dynamics are used to compute the transport properties of quaternary CaAl 2 Si 2 -type rare-earth phosphides RECuZnP 2 (RE = Pr, Nd, Er), which were identified to be promising thermoelectrics from high-throughput screening of 20 000 disordered compounds. Experimental measurements of the transport properties agree well with the computed values. Compounds with stiff bulk moduli (>80 GPa) and high speeds of sound (>3500 m s −1 ) such as RECuZnP 2 are typically dismissed as thermoelectric materials because they are expected to exhibit high lattice thermal conductivity. However, RECuZnP 2 exhibits not only low electrical resistivity, but also low lattice thermal conductivity (∼1 W m −1 K −1 ). Contrary to prior assumptions, polar-optical phonon scattering was revealed by AMSET to be the primary mechanism limiting the electronic mobility of these compounds, raising questions about existing assumptions of scattering mechanisms in this class of thermoelectric materials. The resulting thermoelectric performance ( zT of 0.5 for ErCuZnP 2 at 800 K) is among the best observed in phosphides and can likely be improved with further optimization. 
    more » « less
  3. Abstract An emerging chalcogenide perovskite, CaZrSe3, holds promise for energy conversion applications given its notable optical and electrical properties. However, knowledge of its thermal properties is extremely important, e.g. for potential thermoelectric applications, and has not been previously reported in detail. In this work, we examine and explain the lattice thermal transport mechanisms in CaZrSe3using density functional theory and Boltzmann transport calculations. We find the mean relaxation time to be extremely short corroborating an enhanced phonon–phonon scattering that annihilates phonon modes, and lowers thermal conductivity. In addition, strong anharmonicity in the perovskite crystal represented by the Grüneisen parameter predictions, and low phonon number density for the acoustic modes, results in the lattice thermal conductivity to be limited to 1.17 W m−1 K−1. The average phonon mean free path in the bulk CaZrSe3sample (N → ∞) is 138.1 nm and nanostructuring CaZrSe3sample to ~10 nm diminishes the thermal conductivity to 0.23 W m−1 K−1. We also find that p-type doping yields higher predictions of thermoelectric figure of merit than n-type doping, and values ofZT~0.95–1 are found for hole concentrations in the range 1016–1017 cm−3and temperature between 600 and 700 K. 
    more » « less
  4. High-throughput calculations (first-principles density functional theory and semi-empirical transport models) have the potential to guide the discovery of new thermoelectric materials. Herein we have computationally assessed the potential for thermoelectric performance of 145 complex Zintl pnictides. Of the 145 Zintl compounds assessed, 17% show promising n-type transport properties, compared with only 6% showing promising p-type transport. We predict that n-type Zintl compounds should exhibit high mobility μ n while maintaining the low thermal conductivity κ L typical of Zintl phases. Thus, not only do candidate n-type Zintls outnumber their p-type counterparts, but they may also exhibit improved thermoelectric performance. From the computational search, we have selected n-type KAlSb 4 as a promising thermoelectric material. Synthesis and characterization of polycrystalline KAlSb 4 reveals non-degenerate n-type transport. With Ba substitution, the carrier concentration is tuned between 10 18 and 10 19 e − cm −3 with a maximum Ba solubility of 0.7% on the K site. High temperature transport measurements confirm a high μ n (50 cm 2 V −1 s −1 ) coupled with a near minimum κ L (0.5 W m −1 K −1 ) at 370 °C. Together, these properties yield a zT of 0.7 at 370 °C for the composition K 0.99 Ba 0.01 AlSb 4 . Based on the theoretical predictions and subsequent experimental validation, we find significant motivation for the exploration of n-type thermoelectric performance in other Zintl pnictides. 
    more » « less
  5. The Mg 3 Sb 2− x Bi x family has emerged as the potential candidates for thermoelectric applications due to their ultra-low lattice thermal conductivity ( κ L ) at room temperature (RT) and structural complexity. Here, using ab initio calculations of the electron-phonon averaged (EPA) approximation coupled with Boltzmann transport equation (BTE), we have studied electronic, phonon and thermoelectric properties of Mg 3 Sb 2− x Bi x (x = 0, 1, and 2) monolayers. In violation of common mass-trend expectations, increasing Bi element content with heavier Zintl phase compounds yields an abnormal change in κ L in two-dimensional Mg 3 Sb 2− x Bi x crystals at RT (∼0.51, 1.86, and 0.25 W/mK for Mg 3 Sb 2 , Mg 3 SbBi, and Mg 3 Bi 2 ). The κ L trend was detailedly analyzed via the phonon heat capacity, group velocity and lifetime parameters. Based on quantitative electronic band structures, the electronic bonding through the crystal orbital Hamilton population (COHP) and electron local function analysis we reveal the underlying mechanism for the semiconductor-semimetallic transition of Mg 3 Sb 2-− x Bi x compounds, and these electronic transport properties (Seebeck coefficient, electrical conductivity, and electronic thermal conductivity) were calculated. We demonstrate that the highest dimensionless figure of merit ZT of Mg 3 Sb 2− x Bi x compounds with increasing Bi content can reach ∼1.6, 0.2, and 0.6 at 700 K, respectively. Our results can indicate that replacing heavier anion element in Zintl phase Mg 3 Sb 2− x Bi x materials go beyond common expectations (a heavier atom always lead to a lower κ L from Slack’s theory), which provide a novel insight for regulating thermoelectric performance without restricting conventional heavy atomic mass approach. 
    more » « less