Social recommendation task aims to predict users' preferences over items with the incorporation of social connections among users, so as to alleviate the sparse issue of collaborative filtering. While many recent efforts show the effectiveness of neural network-based social recommender systems, several important challenges have not been well addressed yet: (i) The majority of models only consider users’ social connections, while ignoring the inter-dependent knowledge across items; (ii) Most of existing solutions are designed for singular type of user-item interactions, making them infeasible to capture the interaction heterogeneity; (iii) The dynamic nature of user-item interactions has been less explored in many social-aware recommendation techniques. To tackle the above challenges, this work proposes a Knowledge-aware Coupled Graph Neural Network (KCGN) that jointly injects the inter-dependent knowledge across items and users into the recommendation framework. KCGN enables the high-order user- and item-wise relation encoding by exploiting the mutual information for global graph structure awareness. Additionally, we further augment KCGN with the capability of capturing dynamic multi-typed user-item interactive patterns. Experimental studies on real-world datasets show the effectiveness of our method against many strong baselines in a variety of settings. Source codes are available at: https://github.com/xhcdream/KCGN. 
                        more » 
                        « less   
                    
                            
                            HyperSoRec: Exploiting Hyperbolic User and Item Representations with Multiple Aspects for Social-aware Recommendation
                        
                    
    
            Social recommendation has achieved great success in many domains including e-commerce and location-based social networks. Existing methods usually explore the user-item interactions or user-user connections to predict users’ preference behaviors. However, they usually learn both user and item representations in Euclidean space, which has large limitations for exploring the latent hierarchical property in the data. In this article, we study a novel problem of hyperbolic social recommendation, where we aim to learn the compact but strong representations for both users and items. Meanwhile, this work also addresses two critical domain-issues, which are under-explored. First, users often make trade-offs with multiple underlying aspect factors to make decisions during their interactions with items. Second, users generally build connections with others in terms of different aspects, which produces different influences with aspects in social network. To this end, we propose a novel graph neural network (GNN) framework with multiple aspect learning, namely, HyperSoRec. Specifically, we first embed all users, items, and aspects into hyperbolic space with superior representations to ensure their hierarchical properties. Then, we adapt a GNN with novel multi-aspect message-passing-receiving mechanism to capture different influences among users. Next, to characterize the multi-aspect interactions of users on items, we propose an adaptive hyperbolic metric learning method by introducing learnable interactive relations among different aspects. Finally, we utilize the hyperbolic translational distance to measure the plausibility in each user-item pair for recommendation. Experimental results on two public datasets clearly demonstrate that our HyperSoRec not only achieves significant improvement for recommendation performance but also shows better representation ability in hyperbolic space with strong robustness and reliability. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10332502
- Date Published:
- Journal Name:
- ACM Transactions on Information Systems
- Volume:
- 40
- Issue:
- 2
- ISSN:
- 1046-8188
- Page Range / eLocation ID:
- 1 to 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Collaborative filtering (CF) is a prevalent technique utilized in recommender systems (RSs), and has been extensively deployed in various real-world applications. A recent study in CF focuses on improving the quality of representations from the perspective of alignment and uniformity on the hyperspheres for enhanced recommendation performance. It promotes alignment to increase the similarity between representations of interacting users and items, and enhances uniformity to have more uniformly distributed user and item representations within their respective hyperspheres. However, although alignment and uniformity are enforced by two different optimized objectives, respectively, they jointly constitute the supervised signals for model training. Models trained with only supervised signals in labeled data can inevitably overfit the noise introduced by label sampling variance, even with i.i.d. datasets. This overfitting to noise further compromises the model's generalizability and performance on unseen testing data. To address this issue, in this study, we aim to mitigate the effect caused by the sampling variance in labeled training data to improve representation generalizability from the perspective of alignment and uniformity. Representations with more generalized alignment and uniformity further lead to improved model performance on testing data. Specifically, we model the data as a user-item interaction bipartite graph, and apply a graph neural network (GNN) to learn the user and item representations. This graph modeling approach allows us to integrate self-supervised signals into the RS, by performing self-supervised contrastive learning on the user and item representations from the perspective of label-irrelevant alignment and uniformity. Since the representations are less dependent on label supervision, they can capture more label-irrelevant data structures and patterns, leading to more generalized alignment and uniformity. We conduct extensive experiments on three benchmark datasets to demonstrate the superiority of our framework (i.e., improved performance and faster convergence speed). Our codes: https://github.com/zyouyang/AUPlusmore » « less
- 
            null (Ed.)Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complex and user relations can be high-order. Hypergraph provides a natural way to model high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. Extensive experiments on multiple real-world datasets demonstrate the superiority of the proposed model over the current SOTA methods, and the ablation study verifies the effectiveness and rationale of the multi-channel setting and the self-supervised task. The implementation of our model is available via https://github.com/Coder-Yu/RecQ.more » « less
- 
            Explaining to users why some items are recommended is critical, as it can help users to make better decisions, increase their satisfaction, and gain their trust in recommender systems (RS). However, existing explainable RS usually consider explanation as a side output of the recommendation model, which has two problems: (1) It is difficult to evaluate the produced explanations, because they are usually model-dependent, and (2) as a result, how the explanations impact the recommendation performance is less investigated. In this article, explaining recommendations is formulated as a ranking task and learned from data, similarly to item ranking for recommendation. This makes it possible for standard evaluation of explanations via ranking metrics (e.g., Normalized Discounted Cumulative Gain). Furthermore, this article extends traditional item ranking to an item–explanation joint-ranking formalization to study if purposely selecting explanations could reach certain learning goals, e.g., improving recommendation performance. A great challenge, however, is that the sparsity issue in the user-item-explanation data would be inevitably severer than that in traditional user–item interaction data, since not every user–item pair can be associated with all explanations. To mitigate this issue, this article proposes to perform two sets of matrix factorization by considering the ternary relationship as two groups of binary relationships. Experiments on three large datasets verify the solution’s effectiveness on both explanation ranking and item recommendation.more » « less
- 
            Personalized item recommendation typically suffers from data sparsity, which is most often addressed by learning vector representations of users and items via low-rank matrix factorization. While this effectively densifies the matrix by assuming users and movies can be represented by linearly dependent latent features, it does not capture more complicated interactions. For example, vector representations struggle with set-theoretic relationships, such as negation and intersection, e.g. recommending a movie that is “comedy and action, but not romance”. In this work, we formulate the problem of personalized item recommendation as matrix completion where rows are set-theoretically dependent. To capture this set-theoretic dependence we represent each user and attribute by a hyper-rectangle or box (i.e. a Cartesian product of intervals). Box embeddings can intuitively be understood as trainable Venn diagrams, and thus not only inherently represent similarity (via the Jaccard index), but also naturally and faithfully support arbitrary set-theoretic relationships. Queries involving set-theoretic constraints can be efficiently computed directly on the embedding space by performing geometric operations on the representations. We empirically demonstrate the superiority of box embeddings over vector-based neural methods on both simple and complex item recommendation queries by up to 30% overall.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    