skip to main content


Title: Engineering Futures: Updating a Successful Professional Development Program to Address New Challenges
Engineering Futures (EF) is a professional development program developed by Tau Beta Pi, the Engineering Honor Society, in the 1980s to provide undergraduate engineering students with the “soft skills” necessary for professional success. Originally, the EF program included a series of day-long, interactive workshops led by volunteer facilitators and hosted on-site at college campuses. The original sessions included People Skills (interpersonal problem communication and resolution); Team Chartering (understanding team dynamics); Group Process (tools for effective meetings); and Analytical Problem Solving (brainstorming, list reduction and evaluation criteria). Over the decades, the EF program adapted to meet the changing needs of undergraduate students, with options for shorter sessions and the addition of a module on Effective Presentation Skills in the early 2000s. In the 2010s, the EF program directors began to explore opportunities to expand the curriculum to address new challenges. A new partnership in 2015 led to the addition of two new modules: Equity, Inclusion & Engineering Ethics; and Research Mentoring. In 2017, Tau Beta Pi partnered with several other organizations in a successful proposal to the National Science Foundation to develop updated training materials focusing on communications, teamwork and leadership skills. These materials are being designed in a modular fashion that allows them to be adjusted for different audiences (undergraduates, graduate students, professionals) and the project includes funding for a “train the trainers” program that will enable the EF materials to be deployed nationally at little or no cost to hosting organizations. This paper provides a historical context for the EF program, describes the recent efforts to update and expand the curriculum, and provides insights from several years of participation and program evaluation data.  more » « less
Award ID(s):
1730137
NSF-PAR ID:
10122738
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2019 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes initial results from a collaborative effort to develop a flexible, open-source professional skills training program for engineers and scientists. The collaboration was initiated by Michigan State University (MSU) as part of a (successful) training grant proposal to the National Science Foundation. MSU proposed to lead efforts to develop new professional development training materials focused on communication, teamwork and leadership skills. Tau Beta Pi, the Engineering Honor Society, joined the collaboration and provided access to a national network of well-trained, volunteer facilitators who were eager for new curriculum materials. Several national organizations that offer technical training in various areas of expertise also joined the collaboration, including the National Research Mentor Network (NRMN), the Center for the Improvement of Mentored Experiences in Research (CIMER), and the Carpentries. Their contributions included experience managing large repositories of curricula and ensuring quality control while allowing materials to be updated regularly. During the first year of this collaboration, new curriculum was developed at MSU and pilot tested by facilitators from Tau Beta Pi (TBP). Several of the collaborating training programs helped to advertise or host these pilot tests. While the project is funded for another two years, the benefits of this unique collaboration are already apparent and new partners are expressing interest in expanding this project to develop a national framework for sharing resources, facilitators and curriculum between programs. 
    more » « less
  2. The Informatics Skunkworks program provides a new framework for engaging undergraduates in research experiences, with a focus on the interface of data science and materials science. The program seeks to provide authentic research, engaged personal learning, and professional development while also being efficient, accessible, and scalable. Initially developed at the University of Wisconsin-Madison, participation continues to grow, with over 90 students engaged in research or training activities during the Fall 2021 semester from 4 institutions. The Skunkworks focuses on reducing barriers to engagement for mentors and students in undergraduate research by replacing bespoke and ad-hoc approaches with efforts and infrastructure that are reusable and scalable, including simplified standardized recruiting methods, online modular training resources, flexible undergraduate accessible software tools, long-term research projects with many similar but distinct components to engage large teams, and support from a learning community. For example, new students have the option to participate in a modular, self-paced, online onboarding curriculum that teaches students the basic skills needed for most data science projects, thereby dramatically reducing the mentor time needed to engage students with limited background in machine learning research. Projects are authentic research challenges that strive to allow for large flexible teams, thereby scaling up their impact from the typical engagement of just one or two students and allowing for extensive peer teaching. Throughout the program, professional development activities are efficiently delivered through standardized materials to teach critical research skills like record keeping, establishing group expectations and dynamics, and networking. These skills are also reinforced at workshop events hosted during the semester, which are effectively delivered online and yield growing impact for modest effort as the community grows. The program has been successfully implemented as evidenced by the last two semesters' evaluation findings through interviews, focus groups, and pre-post surveys. The students reported a positive attitude towards the program. Students' perception about machine learning knowledge and skills and their self-confidence improved after they got involved in the program. The instructors and mentors indicated positive teaching and mentoring experiences, and shared ideas on the further improvement of the program. Building on its early successes the team is continuing to implement evaluation data-driven improvements to the program with the goal of continuing to grow through new collaborations. 
    more » « less
  3. Computational modeling skills are critical for the success of both engineering students and practicing engineers and are increasingly included as part of the undergraduate curriculum. However, students' belief in the utility of these skills and their ability to succeed in learning them can vary significantly. This study hypothesizes that the self-efficacy and motivation of engineering students at the outset of their degree program varies significantly and that engineering students pursuing some disciplines (such as computer, software, and electrical engineering) will begin with a higher initial self-efficacy than others (such as materials science and engineering and biomedical engineering). In this pilot study, a survey was used to investigate the motivational and efficacy factors of approximately 70 undergraduate students in their first year of engineering studies at a large public university. Surveys were implemented after students were introduced to MATLAB in their first-year engineering design course. The data was analyzed for variations in baseline motivation based on the students' intended major. The results of this survey will help determine whether efficacy and interest related to computational modeling are indeed lower for certain engineering disciplines and will inform future studies in this area. 
    more » « less
  4. The goal of this program, funded by the National Science Foundation Advanced Technological Education (NSF ATE) program, is to provide additional professional and technical skills to cohorts of high school students through a five-week Saturday Program. The curriculum is continuously reviewed and modified to address current skills needed by the technician workforce. While this program was originally proposed and planned as in-person, the leadership team decided to shift to a virtual environment as the pandemic caused the closure of community college campuses where the program was to be held. Program modalities and curriculum were modified to shift to an online experience. In Fall 2022, the program was able to return to an in-person format. The program’s leadership team disseminates best practices through presentations, social media, publications, and workshops at national conferences. The four-day Summer Teachers’ Workshop brings high school and community college educators from throughout the United States to experience the same program that is used for the high school students. The Program’s outreach efforts and the national dissemination of best practices for engaging underrepresented populations in technology careers has a national impact that will potentially increase the diversity of the technician workforce. The program has inspired participants to have confidence in their own abilities. Principals from participating high schools have commented that students who attended the Program have demonstrated an improvement in their academics and behavior due to the knowledge of professional and technical skills that they have gleaned from the program. The program has provided inner-city students from four high schools with out-of-school, hands-on educational programs focusing on professional skills, technical writing and engineering technology competencies. Participant demographics will be discussed in this paper as diversity is a key objective of the program. The program utilizes industry-driven, project-based learning (PBL) and lessons in career and college readiness to prepare students for the workforce. Each student session consists of five consecutive Saturdays and is taught by a team of high school teachers, community college faculty, and instructors with expertise in professional skills, teambuilding, leadership, technical writing, coding, and STEM disciplines. 
    more » « less
  5. Engineering education research and accreditation criteria have for some time emphasized that to adequately prepare engineers to meet 21st century challenges, programs need to move toward an approach that integrates professional knowledge, skills, and real-world experiences throughout the curriculum [1], [2], [3]. An integrated approach allows students to draw connections between different disciplinary content, develop professional skills through practice, and relate their emerging engineering competencies to the problems and communities they care about [4], [5]. Despite the known benefits, the challenges to implementing such major programmatic changes are myriad, including faculty’s limited expertise outside their own disciplinary area of specialization and lack of perspective of professional learning outcomes across the curriculum. In 2020, Montana State University initiated a five-year NSF-funded Revolutionizing Engineering Departments (RED) project to transform its environmental engineering program by replacing traditional topic-focused courses with a newly developed integrated and project-based curriculum (IPBC). The project engages all tenure-track faculty in the environmental engineering program as well as faculty from five external departments in a collaborative, iterative process to define what students should be expected to know and do at the completion of the undergraduate program. In the process, sustainability, professionalism, and systems thinking arose as foundational pillars of the successful environmental engineer and are proposed as three knowledge threads that can be woven throughout environmental engineering curricula. The paper explores the two-year programmatic redesign process and examines how lessons learned through the process can be applied to course development as the team transitions into the implementation phase of the project. Two new integrated project-based learning courses targeting the 1st- and 2nd-year levels will be taught in academic year 2023-2024. The approach described in this work can be utilized by similar programs as a model for bottom-up curriculum development and integration of non-technical content, which will be necessary for educating engineers of the future. 
    more » « less