Convolutional Neural Network (CNN) uses convolutional layers to explore spatial/temporal adjacency to construct new feature representations. So, CNN is commonly used for data with strong temporal/spatial correlations, but cannot be directly applied to generic learning tasks. In this paper, we propose to enable CNN for learning from generic data to improve classification accuracy. To take the full advantage of CNN’s feature learning power, we propose to convert each instance of the original dataset into a synthetic matrix/image format. To maximize the correlation in the constructed matrix/image, we use 0/1 optimization to reorder features and ensure that the ones with strong correlations are adjacent to each other. By using a feature reordering matrix, we are able to create a synthetic image to represent each instance. Because the constructed synthetic image preserves the original feature values and correlation, CNN can be applied to learn effective features for classification. Experiments and comparisons, on 22 benchmark datasets, demonstrate clear performance gain of applying CNN to generic datasets, compared to conventional machine learning methods. Furthermore, our method consistently outperforms approaches which directly apply CNN to generic datasets in naive ways. This research allows deep learning to be broadly applied to generic datasets.
more »
« less
Learning Convolutional Neural Networks from Ordered Features of Generic Data
Convolutional neural networks (CNN) have become very popular for computer vision, text, and sequence tasks. CNNs have the advantage of being able to learn local patterns through convolution filters. However, generic datasets do not have meaningful local data correlations, because their features are assumed to be independent of each other. In this paper, we propose an approach to reorder features of a generic dataset to create feature correlations for CNN to learn feature representation, and use learned features as inputs to help improve traditional machine learning classifiers. Our experiments on benchmark data exhibit increased performance and illustrate the benefits of using CNNs for generic datasets.
more »
« less
- Award ID(s):
- 1828181
- PAR ID:
- 10122919
- Date Published:
- Journal Name:
- The 17th IEEE International Conference on Machine Learning and Applications (ICMLA)
- Page Range / eLocation ID:
- 897 to 900
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper proposes to enable deep learning for generic machine learning tasks. Our goal is to allow deep learning to be applied to data which are already represented in instance feature tabular format for a better classification accuracy. Because deep learning relies on spatial/temporal correlation to learn new feature representation, our theme is to convert each instance of the original dataset into a synthetic matrix format to take the full advantage of the feature learning power of deep learning methods. To maximize the correlation of the matrix , we use 0/1 optimization to reorder features such that the ones with strong correlations are adjacent to each other. By using a two dimensional feature reordering, we are able to create a synthetic matrix, as an image, to represent each instance. Because the synthetic image preserves the original feature values and data correlation, existing deep learning algorithms, such as convolutional neural networks (CNN), can be applied to learn effective features for classification. Our experiments on 20 generic datasets, using CNN as the deep learning classifier, confirm that enabling deep learning to generic datasets has clear performance gain, compared to generic machine learning methods. In addition, the proposed method consistently outperforms simple baselines of using CNN for generic dataset. As a result, our research allows deep learning to be broadly applied to generic datasets for learning and classificationmore » « less
-
Contrastive self-supervised learning has been successfully used in many domains, such as images, texts, graphs, etc., to learn features without requiring label information. In this paper, we propose a new local contrastive feature learning (LoCL) framework, and our theme is to learn local patterns/features from tabular data. In order to create a niche for local learning, we use feature correlations to create a maximum-spanning tree, and break the tree into feature subsets, with strongly correlated features being assigned next to each other. Convolutional learning of the features is used to learn latent feature space, regulated by contrastive and reconstruction losses. Experiments on public tabular datasets show the effectiveness of the proposed method versus state-of-the-art baseline methods.more » « less
-
In the past decade, deep neural networks, and specifically convolutional neural networks (CNNs), have been becoming a primary tool in the field of biomedical image analysis, and are used intensively in other fields such as object or face recognition. CNNs have a clear advantage in their ability to provide superior performance, yet without the requirement to fully understand the image elements that reflect the biomedical problem at hand, and without designing specific algorithms for that task. The availability of easy-to-use libraries and their non-parametric nature make CNN the most common solution to problems that require automatic biomedical image analysis. But while CNNs have many advantages, they also have certain downsides. The features determined by CNNs are complex and unintuitive, and therefore CNNs often work as a “Black Box”. Additionally, CNNs learn from any piece of information in the pixel data that can provide a discriminative signal, making it more difficult to control what the CNN actually learns. Here we follow common practices to test whether CNNs can classify biomedical image datasets, but instead of using the entire image we use merely parts of the images that do not have biomedical content. The experiments show that CNNs can provide high classification accuracy even when they are trained with datasets that do not contain any biomedical information, or can be systematically biased by irrelevant information in the image data. The presence of such consistent irrelevant data is difficult to identify, and can therefore lead to biased experimental results. Possible solutions to this downside of CNNs can be control experiments, as well as other protective practices to validate the results and avoid biased conclusions based on CNN-generated annotations.more » « less
-
Implementing local contextual guidance principles in a single-layer CNN architecture, we propose an efficient algorithm for developing broad-purpose representations (i.e., representations transferable to new tasks without additional training) in shallow CNNs trained on limited-size datasets. A contextually guided CNN (CG-CNN) is trained on groups of neighboring image patches picked at random image locations in the dataset. Such neighboring patches are likely to have a common context and therefore are treated for the purposes of training as belonging to the same class. Across multiple iterations of such training on different context-sharing groups of image patches, CNN features that are optimized in one iteration are then transferred to the next iteration for further optimization, etc. In this process, CNN features acquire higher pluripotency, or inferential utility for any arbitrary classification task. In our applications to natural images and hyperspectral images, we find that CG-CNN can learn transferable features similar to those learned by the first layers of the well-known deep networks and produce favorable classification accuracies.more » « less
An official website of the United States government

