skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Soft Hybrid Wave Spring Actuators
Soft continuum manipulators, inspired by squid tentacles and elephant trunks, show promise in allowing robots to safely interact with complex environments. One ongoing problem for these manipulators is torsional stiffness, as continuum manipulators are naturally compliant and cannot actively resist torsional strain. A hybrid actuator that combines molded silicone actuators with 3D printed flexible wave springs is used to overcome this problem. It is shown that the inclusion of the 3D printed wave spring increases actuator torsional stiffness by up to a factor of 10. Further investigation of these structures is performed using both experimentation and simulation. Finally, this hybrid actuator design is used to create a nine‐degree‐of‐freedom soft continuum manipulator, which is used to perform a cantilevered pick‐and‐place task impossible for a traditional soft manipulator of similar size.  more » « less
Award ID(s):
1752195 1728412
PAR ID:
10123034
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Intelligent Systems
Volume:
2
Issue:
1
ISSN:
2640-4567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Siciliano, B.; Laschi, C.; Khatib, O. (Ed.)
    We design a compliant delta manipulator using 3D-printing and soft materials. Our design is different from the traditionally rigid delta robots as it is more accessible through low-cost 3D-printing, and can interact safely with its surroundings due to compliance. This work focuses on parallelogram links which are a key component of the delta robot design. We characterize these links over twelve dimensional parameters, such as beam and hinge thickness, and two material stiffness settings by displacing them, and observing the resulting forces and rotation angles. The parallelogram links are then integrated into a delta robot structure to test for delta mechanism behavior, which keeps the end-effector parallel to the base of the robot. We observed that using compliant hinges resulted in near-delta behavior, laying the groundwork for fabricating and utilizing 3D-printed compliant delta manipulators. 
    more » « less
  2. Soft robots struggle with terrestrial locomotion due to their inherent lack of rigidity, specifically along axes not in line with the direction of actuation (side loads). We present a method for improved stiffness in a 3D printed, tendon-driven soft actuator. We show, both mathematically and experimentally, that our method leads to improved stiffness to these side loads. Additionally, we demonstrate the use of complex tendon routing schemes to achieve various trajectories with a single actuator morphology. Finally, we demonstrate that these two tendon routing strategies lead to improved locomotion speed and gait efficiency in a 3- legged, 3D printed, soft robot. 
    more » « less
  3. The development of compliant robotic manipulators which can show length change, compliance and dexterity could assist many challenging applications. Potential applications range from dexterous manipulation, robotic surgery or exploration of challenging environments. Despite significant developments in both fabrication and control approaches for continuum body manipulators, there have been few demonstrations of continuum body systems which display all these properties. We present a method for fabricating a continuum manipulation which shows extension, high force movements and a range of dexterous position. This approach uses 3D printing to create a flexible rack and pinion system. These high torque mechanisms are mounted at points along the 3D printed tracks to allow complex shape control of the continuum system. A controller has been also been developed based on a Piecewise Constant Curvature approximation to allow the position of the tip of the manipulator to be controlled, and motion paths to be followed. In this work, we show the force capabilities of this manipulator and demonstrate how multiple segments can be created for more complex movements. 
    more » « less
  4. Abstract The inherent low stiffness in soft robots makes them preferable for working in close proximity to humans. However, having this low stiffness creates challenges when operating in terms of control and sensitivity to disturbances. To alleviate this issue, soft robots often have built-in stiffness tuning mechanisms that allow for controlled increases in stiffness. Additionally, redundant pneumatic manipulators can utilize antagonistic pressure to achieve identical positions under increased stiffness. In this paper, we develop a model to predict the stiffness and configuration of a pneumatic soft manipulator under different pressure inputs and external forces. The model is developed based on the physical characteristics of a soft manipulator while enabling efficient parameter estimation and computation. The efficacy of the modeling approach is supported via experimental results. 
    more » « less
  5. Numerous soft and continuum robotic manipulators have demonstrated their potential for compliant operation in highly unstructured environments or near people. Despite their recent popularity, modeling of their smooth bending deformation remains a challenge. For soft continuum manipulators, the widespread, constant curvature approach to modeling is inadequate for modeling some deformations that occur in practice, such as combined bending and twisting deformations. In this paper, we extend the classical Cosserat rod approach to model a variable-length, pneumatic soft continuum arm. We model the deformation of a pneumatically driven soft continuum manipulator, and the model is then compared against experimental data collected from a three degree of freedom, pneumatically actuated, soft continuum manipulator. The model shows good agreement in capturing the overall behavior of the bending deformation, with mean Euclidean error at the tip of the robot of 2.48 cm for a 22 cm long robot. In addition, the model shows good numerical stability for simulating long duration computations. 
    more » « less