skip to main content


Title: The Cohomological Brauer Group of a Torsion ${\mathbb{G}}_{m}$-Gerbe
Abstract

Let $S$ be a scheme and let $\pi : \mathcal{G} \to S$ be a ${\mathbb{G}}_{m,S}$-gerbe corresponding to a torsion class $[\mathcal{G}]$ in the cohomological Brauer group ${\operatorname{Br}}^{\prime}(S)$ of $S$. We show that the cohomological Brauer group ${\operatorname{Br}}^{\prime}(\mathcal{G})$ of $\mathcal{G}$ is isomorphic to the quotient of ${\operatorname{Br}}^{\prime}(S)$ by the subgroup generated by the class $[\mathcal{G}]$. This is analogous to a theorem proved by Gabber for Brauer–Severi schemes.

 
more » « less
Award ID(s):
1646385
NSF-PAR ID:
10123040
Author(s) / Creator(s):
 
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Let $k$ be an algebraically closed field of characteristic $p$, and let ${\mathcal{O}}$ be either $k$ or its ring of Witt vectors $W(k)$. Let $G$ be a finite group and $B$ a block of ${\mathcal{O}} G$ with normal abelian defect group and abelian $p^{\prime}$ inertial quotient $L$. We show that $B$ is isomorphic to its second Frobenius twist. This is motivated by the fact that bounding Frobenius numbers is one of the key steps towards Donovan’s conjecture. For ${\mathcal{O}}=k$, we give an explicit description of the basic algebra of $B$ as a quiver with relations. It is a quantized version of the group algebra of the semidirect product $P\rtimes L$.

     
    more » « less
  2. Abstract Let $M$ be a compact 3-manifold and $\Gamma =\pi _1(M)$. Work by Thurston and Culler–Shalen established the ${\operatorname{\textrm{SL}}}_2({\mathbb{C}})$ character variety $X(\Gamma )$ as fundamental tool in the study of the geometry and topology of $M$. This is particularly the case when $M$ is the exterior of a hyperbolic knot $K$ in $S^3$. The main goals of this paper are to bring to bear tools from algebraic and arithmetic geometry to understand algebraic and number theoretic properties of the so-called canonical component of $X(\Gamma )$, as well as distinguished points on the canonical component, when $\Gamma $ is a knot group. In particular, we study how the theory of quaternion Azumaya algebras can be used to obtain algebraic and arithmetic information about Dehn surgeries, and perhaps of most interest, to construct new knot invariants that lie in the Brauer groups of curves over number fields. 
    more » « less
  3. Abstract We show that the bounded Borel class of any dense representation $\rho : G\to{\operatorname{PSL}}_n{\mathbb{C}}$ is non-zero in degree three bounded cohomology and has maximal semi-norm, for any discrete group $G$. When $n=2$, the Borel class is equal to the three-dimensional hyperbolic volume class. Using tools from the theory of Kleinian groups, we show that the volume class of a dense representation $\rho : G\to{\operatorname{PSL}}_2{\mathbb{C}}$ is uniformly separated in semi-norm from any other representation $\rho ^{\prime}: G\to{\operatorname{PSL}}_2 {\mathbb{C}}$ for which there is a subgroup $H\le G$ on which $\rho $ is still dense but $\rho ^{\prime}$ is discrete or indiscrete but stabilizes a point, line, or plane in ${\mathbb{H}}^3\cup \partial{\mathbb{H}}^3$. We exhibit a family of dense representations of a non-abelian free group on two letters and a family of discontinuous dense representations of ${\operatorname{PSL}}_2{\mathbb{R}}$, whose volume classes are linearly independent and satisfy some additional properties; the cardinality of these families is that of the continuum. We explain how the strategy employed may be used to produce non-trivial volume classes in higher dimensions, contingent on the existence of a family of hyperbolic manifolds with certain topological and geometric properties. 
    more » « less
  4. Let G G be a reductive group, and let X X be a smooth quasi-projective complex variety. We prove that any G G -irreducible, G G -cohomologically rigid local system on X X with finite order abelianization and quasi-unipotent local monodromies is integral. This generalizes work of Esnault and Groechenig [Selecta Math. (N. S. ) 24 (2018), pp. 4279–4292; Acta Math. 225 (2020), pp. 103–158] when G = G L n G= \mathrm {GL}_n , and it answers positively a conjecture of Simpson [Inst. Hautes Études Sci. Publ. Math. 75 (1992), pp. 5–95; Inst. Hautes Études Sci. Publ. Math. 80 (1994), pp. 5–79] for G G -cohomologically rigid local systems. Along the way we show that the connected component of the Zariski-closure of the monodromy group of any such local system is semisimple; this moreover holds when we relax cohomological rigidity to rigidity. 
    more » « less
  5. We continue the study of multiple cluster structures in the rings of regular functions on $GL_n$, $SL_n$ and $\operatorname{Mat}_n$ that are compatible with Poisson-Lie and Poisson-homogeneous structures. According to our initial conjecture, each class in the Belavin-Drinfeld classification of Poisson--Lie structures on a semisimple complex group $\mathcal G$ corresponds to a cluster structure in $\mathcal O(\mathcal G)$. Here we prove this conjecture for a large subset of Belavin-Drinfeld (BD) data of $A_n$ type, which includes all the previously known examples. Namely, we subdivide all possible $A_n$ type BD data into oriented and non-oriented kinds. In the oriented case, we single out BD data satisfying a certain combinatorial condition that we call aperiodicity and prove that for any BD data of this kind there exists a regular cluster structure compatible with the corresponding Poisson-Lie bracket. In fact, we extend the aperiodicity condition to pairs of oriented BD data and prove a more general result that establishes an existence of a regular cluster structure on $SL_n$ compatible with a Poisson bracket homogeneous with respect to the right and left action of two copies of $SL_n$ equipped with two different Poisson-Lie brackets. If the aperiodicity condition is not satisfied, a compatible cluster structure has to be replaced with a generalized cluster structure. We will address this situation in future publications. 
    more » « less