skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Borel and Volume Classes for Dense Representations of Discrete Groups
Abstract We show that the bounded Borel class of any dense representation $\rho : G\to{\operatorname{PSL}}_n{\mathbb{C}}$ is non-zero in degree three bounded cohomology and has maximal semi-norm, for any discrete group $G$. When $n=2$, the Borel class is equal to the three-dimensional hyperbolic volume class. Using tools from the theory of Kleinian groups, we show that the volume class of a dense representation $\rho : G\to{\operatorname{PSL}}_2{\mathbb{C}}$ is uniformly separated in semi-norm from any other representation $\rho ^{\prime}: G\to{\operatorname{PSL}}_2 {\mathbb{C}}$ for which there is a subgroup $H\le G$ on which $\rho $ is still dense but $\rho ^{\prime}$ is discrete or indiscrete but stabilizes a point, line, or plane in ${\mathbb{H}}^3\cup \partial{\mathbb{H}}^3$. We exhibit a family of dense representations of a non-abelian free group on two letters and a family of discontinuous dense representations of ${\operatorname{PSL}}_2{\mathbb{R}}$, whose volume classes are linearly independent and satisfy some additional properties; the cardinality of these families is that of the continuum. We explain how the strategy employed may be used to produce non-trivial volume classes in higher dimensions, contingent on the existence of a family of hyperbolic manifolds with certain topological and geometric properties.  more » « less
Award ID(s):
1902896
NSF-PAR ID:
10466055
Author(s) / Creator(s):
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2022
Issue:
15
ISSN:
1073-7928
Page Range / eLocation ID:
11891 to 11956
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Triangular modular curves are a generalization of modular curves that arise from quotients of the upper half-plane by congruence subgroups of hyperbolic triangle groups. These curves also arise naturally as a source of Belyi maps with monodromy $$\text {PGL}_2(\mathbb {F}_q)$$ PGL 2 ( F q ) or $$\text {PSL}_2(\mathbb {F}_q)$$ PSL 2 ( F q ) . We present a computational approach to enumerate Borel-type triangular modular curves of low genus, and we carry out this enumeration for prime level and small genus. 
    more » « less
  2. We generalize work by Bourgain and Kontorovich [ On the local-global conjecture for integral Apollonian gaskets , Invent. Math. 196 (2014), 589–650] and Zhang [ On the local-global principle for integral Apollonian 3-circle packings , J. Reine Angew. Math. 737 , (2018), 71–110], proving an almost local-to-global property for the curvatures of certain circle packings, to a large class of Kleinian groups. Specifically, we associate in a natural way an infinite family of integral packings of circles to any Kleinian group ${\mathcal{A}}\leqslant \text{PSL}_{2}(K)$ satisfying certain conditions, where $K$ is an imaginary quadratic field, and show that the curvatures of the circles in any such packing satisfy an almost local-to-global principle. A key ingredient in the proof is that ${\mathcal{A}}$ possesses a spectral gap property, which we prove for any infinite-covolume, geometrically finite, Zariski dense Kleinian group in $\operatorname{PSL}_{2}({\mathcal{O}}_{K})$ containing a Zariski dense subgroup of $\operatorname{PSL}_{2}(\mathbb{Z})$ . 
    more » « less
  3. Let  ρ ¯ : G Q → GSp 4 ⁡ ( F 3 ) \overline {\rho }: G_{\mathbf {Q}} \rightarrow \operatorname {GSp}_4(\mathbf {F}_3) be a continuous Galois representation with cyclotomic similitude character. Equivalently, consider ρ ¯ \overline {\rho } to be the Galois representation associated to the  3 3 -torsion of a principally polarized abelian surface  A / Q A/\mathbf {Q} . We prove that the moduli space  A 2 ( ρ ¯ ) \mathcal {A}_2(\overline {\rho }) of principally polarized abelian surfaces  B / Q B/\mathbf {Q} admitting a symplectic isomorphism  B [ 3 ] ≃ ρ ¯ B[3] \simeq \overline {\rho } of Galois representations is never rational over  Q \mathbf {Q} when  ρ ¯ \overline {\rho } is surjective, even though it is both rational over  C \mathbf {C} and unirational over  Q \mathbf {Q} via a map of degree  6 6 . 
    more » « less
  4. Abstract

    Let $\Gamma _2\subseteq \Gamma _1$ be finitely generated subgroups of ${\operatorname{GL}}_{n_0}({\mathbb{Z}}[1/q_0])$ where $q_0$ is a positive integer. For $i=1$ or $2$, let ${\mathbb{G}}_i$ be the Zariski-closure of $\Gamma _i$ in $({\operatorname{GL}}_{n_0})_{{\mathbb{Q}}}$, ${\mathbb{G}}_i^{\circ }$ be the Zariski-connected component of ${\mathbb{G}}_i$, and let $G_i$ be the closure of $\Gamma _i$ in $\prod _{p\nmid q_0}{\operatorname{GL}}_{n_0}({\mathbb{Z}}_p)$. In this article we prove that if ${\mathbb{G}}_1^{\circ }$ is the smallest closed normal subgroup of ${\mathbb{G}}_1^{\circ }$ that contains ${\mathbb{G}}_2^{\circ }$ and $\Gamma _2\curvearrowright G_2$ has spectral gap, then $\Gamma _1\curvearrowright G_1$ has spectral gap.

     
    more » « less
  5. Abstract

    Let $S$ be a scheme and let $\pi : \mathcal{G} \to S$ be a ${\mathbb{G}}_{m,S}$-gerbe corresponding to a torsion class $[\mathcal{G}]$ in the cohomological Brauer group ${\operatorname{Br}}^{\prime}(S)$ of $S$. We show that the cohomological Brauer group ${\operatorname{Br}}^{\prime}(\mathcal{G})$ of $\mathcal{G}$ is isomorphic to the quotient of ${\operatorname{Br}}^{\prime}(S)$ by the subgroup generated by the class $[\mathcal{G}]$. This is analogous to a theorem proved by Gabber for Brauer–Severi schemes.

     
    more » « less