- Award ID(s):
- 1902896
- NSF-PAR ID:
- 10466055
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2022
- Issue:
- 15
- ISSN:
- 1073-7928
- Page Range / eLocation ID:
- 11891 to 11956
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Triangular modular curves are a generalization of modular curves that arise from quotients of the upper half-plane by congruence subgroups of hyperbolic triangle groups. These curves also arise naturally as a source of Belyi maps with monodromy $$\text {PGL}_2(\mathbb {F}_q)$$ PGL 2 ( F q ) or $$\text {PSL}_2(\mathbb {F}_q)$$ PSL 2 ( F q ) . We present a computational approach to enumerate Borel-type triangular modular curves of low genus, and we carry out this enumeration for prime level and small genus.more » « less
-
We generalize work by Bourgain and Kontorovich [ On the local-global conjecture for integral Apollonian gaskets , Invent. Math. 196 (2014), 589–650] and Zhang [ On the local-global principle for integral Apollonian 3-circle packings , J. Reine Angew. Math. 737 , (2018), 71–110], proving an almost local-to-global property for the curvatures of certain circle packings, to a large class of Kleinian groups. Specifically, we associate in a natural way an infinite family of integral packings of circles to any Kleinian group ${\mathcal{A}}\leqslant \text{PSL}_{2}(K)$ satisfying certain conditions, where $K$ is an imaginary quadratic field, and show that the curvatures of the circles in any such packing satisfy an almost local-to-global principle. A key ingredient in the proof is that ${\mathcal{A}}$ possesses a spectral gap property, which we prove for any infinite-covolume, geometrically finite, Zariski dense Kleinian group in $\operatorname{PSL}_{2}({\mathcal{O}}_{K})$ containing a Zariski dense subgroup of $\operatorname{PSL}_{2}(\mathbb{Z})$ .more » « less
-
Let ρ ¯ : G Q → GSp 4 ( F 3 ) \overline {\rho }: G_{\mathbf {Q}} \rightarrow \operatorname {GSp}_4(\mathbf {F}_3) be a continuous Galois representation with cyclotomic similitude character. Equivalently, consider ρ ¯ \overline {\rho } to be the Galois representation associated to the 3 3 -torsion of a principally polarized abelian surface A / Q A/\mathbf {Q} . We prove that the moduli space A 2 ( ρ ¯ ) \mathcal {A}_2(\overline {\rho }) of principally polarized abelian surfaces B / Q B/\mathbf {Q} admitting a symplectic isomorphism B [ 3 ] ≃ ρ ¯ B[3] \simeq \overline {\rho } of Galois representations is never rational over Q \mathbf {Q} when ρ ¯ \overline {\rho } is surjective, even though it is both rational over C \mathbf {C} and unirational over Q \mathbf {Q} via a map of degree 6 6 .more » « less
-
Abstract Let $\Gamma _2\subseteq \Gamma _1$ be finitely generated subgroups of ${\operatorname{GL}}_{n_0}({\mathbb{Z}}[1/q_0])$ where $q_0$ is a positive integer. For $i=1$ or $2$, let ${\mathbb{G}}_i$ be the Zariski-closure of $\Gamma _i$ in $({\operatorname{GL}}_{n_0})_{{\mathbb{Q}}}$, ${\mathbb{G}}_i^{\circ }$ be the Zariski-connected component of ${\mathbb{G}}_i$, and let $G_i$ be the closure of $\Gamma _i$ in $\prod _{p\nmid q_0}{\operatorname{GL}}_{n_0}({\mathbb{Z}}_p)$. In this article we prove that if ${\mathbb{G}}_1^{\circ }$ is the smallest closed normal subgroup of ${\mathbb{G}}_1^{\circ }$ that contains ${\mathbb{G}}_2^{\circ }$ and $\Gamma _2\curvearrowright G_2$ has spectral gap, then $\Gamma _1\curvearrowright G_1$ has spectral gap.
-
Abstract Let $S$ be a scheme and let $\pi : \mathcal{G} \to S$ be a ${\mathbb{G}}_{m,S}$-gerbe corresponding to a torsion class $[\mathcal{G}]$ in the cohomological Brauer group ${\operatorname{Br}}^{\prime}(S)$ of $S$. We show that the cohomological Brauer group ${\operatorname{Br}}^{\prime}(\mathcal{G})$ of $\mathcal{G}$ is isomorphic to the quotient of ${\operatorname{Br}}^{\prime}(S)$ by the subgroup generated by the class $[\mathcal{G}]$. This is analogous to a theorem proved by Gabber for Brauer–Severi schemes.