An increase in general quantitative literacy and discipline-specific Physics Quantitative Literacy (PQL) is a major course goal of most introductory-level physics sequences—yet there exist no instruments to assess how PQL changes with instruction in these types of courses. To address this need, we are developing the Physics Inventory of Quantitative Literacy (PIQL), a multiple-choice inventory to assess students’ sense-making about arithmetic and algebra concepts that underpin reasoning in introductory physics courses—proportional reasoning, covariational reasoning and reasoning about sign and signed quantities. The PIQL will be used to not only to assess students’ PQL at specific points in time, but also to track changes in and development of PQL that can be attributed to instruction. Data from early versions of the PIQL suggest that students experience difficulty reasoning about sign and signed quantities.
more »
« less
A Cross-Sectional Investigation of Students’ Reasoning About Integer Addition and Subtraction: Ways of Reasoning, Problem Types, and Flexibility
In a cross-sectional study, 160 students in Grades 2, 4, 7, and 11 were interviewed about their reasoning when solving integer addition and subtraction open-number sentence problems. We applied our previously developed framework for 5 Ways of Reasoning (WoRs) to our data set to describe patterns within and across participant groups. Our analysis of the WoRs also led to the identification of 3 problem types: change-positive, all-negatives, and counterintuitive. We found that problem type influenced student performance and tended to evoke a different way of reasoning. We showed that those with more experience with negative numbers use WoRs more flexibly than those with less experience and that flexibility is correlated with accuracy. We provide 3 types of resources for educators: (a) WoRs and problem-types frameworks, (b) characterization of flexibility with integer addition and subtraction, and (c) development of a trajectory of learning about integers.
more »
« less
- Award ID(s):
- 0918780
- PAR ID:
- 10123107
- Date Published:
- Journal Name:
- Journal for research in mathematics education
- Volume:
- 49
- Issue:
- 5
- ISSN:
- 1945-2306
- Page Range / eLocation ID:
- 575 - 613
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reasoning about memory aliasing and mutation in software verification is a hard problem. This is especially true for systems using SMT-based automated theorem provers. Memory reasoning in SMT verification typically requires a nontrivial amount of manual effort to specify heap invariants, as well as extensive alias reasoning from the SMT solver. In this paper, we present a hybrid approach that combines linear types with SMT-based verification for memory reasoning. We integrate linear types into Dafny, a verification language with an SMT backend, and show that the two approaches complement each other. By separating memory reasoning from verification conditions, linear types reduce the SMT solving time. At the same time, the expressiveness of SMT queries extends the flexibility of the linear type system. In particular, it allows our linear type system to easily and correctly mix linear and nonlinear data in novel ways, encapsulating linear data inside nonlinear data and vice-versa. We formalize the core of our extensions, prove soundness, and provide algorithms for linear type checking. We evaluate our approach by converting the implementation of a verified storage system (about 24K lines of code and proof) written in Dafny, to use our extended Dafny. The resulting system uses linear types for 91% of the code and SMT-based heap reasoning for the remaining 9%. We show that the converted system has 28% fewer lines of proofs and 30% shorter verification time overall. We discuss the development overhead in the original system due to SMT-based heap reasoning and highlight the improved developer experience when using linear types.more » « less
-
Despite the early development of causal reasoning (CR), and its potential for shaping scientific literacy, we have little understanding of its structural origins. Specifically, is CR a unique capability that develops relatively independently or is it largely dependent on broader, more fundamental, cognitive abilities? Executive Functioning (EF) is an especially promising contributor to CR based on its already established role in related skills like planning and problem solving (e.g., Diamond, 2013). To begin exploring this potential relationship, we assessed 123 three (Mage = 3.42 years) and 64 five year olds’ (Mage = 5.36 years) performance on two CR tasks (counterfactual reasoning and causal inference), each of which we expected might be influenced in different ways by distinct EF skills. The counterfactual reasoning task (Guajardo & Turley-Ames, 2004) required children to generate alternative courses of action that would lead to different outcomes in fictional vignettes. The causal inference task (Das Gupta & Bryant, 1989) required children to compare pictures taken before and after a transformation (e.g., broken flowerpot and intact flowerpot) and to select a tool (e.g., glue) that could have caused it. We measured EF with three tasks: flanker (inhibition), count and label (working memory), and dimensional change card sort (cognitive flexibility). Finally, we measured children’s vocabulary and processing speed. To explore the relationship between EF and CR, we conducted a series of four linear regressions predicting causal inference and counterfactual reasoning ability in 3 and 5 year olds. Of all our measures, only vocabulary and inhibitory control emerged as significant predictors of causal inference ability for both 3 (βvocab = .04, p = .002, and βinhib = .04, p = .04) and 5 year olds (βvocab = .03, p = .01, and βinhib = .02, p = .04). Similarly, inhibitory control emerged as the only significant predictor of counterfactual reasoning in 3 year olds, βinhib = .03, p = .03. In contrast, for 5 year olds, working memory was the only significantly predictor of counterfactual reasoning, βWM = .71, p = .02. These results suggest that causal inference skills are stably supported by inhibitory control throughout early childhood. The story for counterfactual reasoning, however, appears to be somewhat more complex. Consistent with previous work (Beck, Riggs & Gorniak, 2009), inhibitory control supported counterfactual reasoning ability in our 3-year-old sample. However, inhibitory control did not significantly predict counterfactual reasoning in 5 year olds, it was supported by working memory instead. One explanation for this difference might have to do with the sophistication of children’s counterfactual reasoning skills at these different ages. Taken together, these results suggest that CR does not develop as a unique capacity, but instead likely relies on EFs that influence different CR skills in distinct ways across development. This represents an initial step in understanding early CR skills, which are promising contributors to emerging scientific literacy.more » « less
-
Measurement of the building blocks of everyday thought must capture the range of different ways that humans may train, develop, and use their cognitive resources in real world tasks. Executive function as a construct has been enthusiastically adopted by cognitive and education sciences due to its theorized role as an underpinning of, and constraint on, humans’ accomplishment of complex cognitively demanding tasks in the world, such as identifying problems, reasoning about and executing multi-step solutions while inhibiting prepotent responses or competing desires. As EF measures have been continually refined for increased precision; however, they have also become increasingly dissociated from those everyday accomplishments. We posit three implications of this insight: (1) extant measures of EFs that reduce context actually add an implicit requirement that children reason using abstract rules that are not accomplishing a function in the world, meaning that EF scores may in part reflect experience with formal schooling and Western, Educated, Industrialized, Rich, Democratic (WEIRD) socialization norms, limiting their ability to predict success in everyday life across contexts, (2) measurement of relational attention and relational reasoning have not received adequate consideration in this context but are highly aligned with the key aims for measuring EFs, and may be more aligned with humans’ everyday cognitive practices, but (3) relational attention and reasoning should be considered alongside rather than as an additional EF as has been suggested, for measurement clarity.more » « less
-
When people solve problems, they may try multiple invalid solutions before finally having an insight about the correct solution. Insight problem-solving is an example of the flexibility of the human mind which remains unmatched by machines. In this paper, we present a novel experimental paradigm for studying insight problem-solving behavior in a physical reasoning domain. Using this paradigm, we seek to quantify precisely what it means to have an insight during physical problem-solving and identify behavioral traces that predict subjective insight ratings collected from human participants. The project provides the first steps towards a computationally informed theory of insight problems solving.more » « less
An official website of the United States government

