skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Estimation of Treatment Effect with Text Covariates
Estimating the treatment effect benefits decision making in various domains as it can provide the potential outcomes of different choices. Existing work mainly focuses on covariates with numerical values, while how to handle covariates with textual information for treatment effect estimation is still an open question. One major challenge is how to filter out the nearly instrumental variables which are the variables more predictive to the treatment than the outcome. Conditioning on those variables to estimate the treatment effect would amplify the estimation bias. To address this challenge, we propose a conditional treatment-adversarial learning based matching method (CTAM). CTAM incorporates the treatment-adversarial learning to filter out the information related to nearly instrumental variables when learning the representations, and then it performs matching among the learned representations to estimate the treatment effects. The conditional treatment-adversarial learning helps reduce the bias of treatment effect estimation, which is demonstrated by our experimental results on both semi-synthetic and real-world datasets.  more » « less
Award ID(s):
1747614
PAR ID:
10123222
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Joint Conference on Artificial Intelligence
Page Range / eLocation ID:
4106 to 4113
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A classical problem in causal inference is that of matching, where treatment units need to be matched to control units based on covariate information. In this work, we propose a method that computes high quality almost-exact matches for high-dimensional categorical datasets. This method, called FLAME (Fast Large-scale Almost Matching Exactly), learns a distance metric for matching using a hold-out training data set. In order to perform matching efficiently for large datasets, FLAME leverages techniques that are natural for query processing in the area of database management, and two implementations of FLAME are provided: the first uses SQL queries and the second uses bit-vector techniques. The algorithm starts by constructing matches of the highest quality (exact matches on all covariates), and successively eliminates variables in order to match exactly on as many variables as possible, while still maintaining interpretable high-quality matches and balance between treatment and control groups. We leverage these high quality matches to estimate conditional average treatment effects (CATEs). Our experiments show that FLAME scales to huge datasets with millions of observations where existing state-of-the-art methods fail, and that it achieves significantly better performance than other matching methods. 
    more » « less
  2. null (Ed.)
    One fundamental problem in causality learning is to estimate the causal effects of one or multiple treatments (e.g., medicines in the prescription) on an important outcome (e.g., cure of a disease). One major challenge of causal effect estimation is the existence of unobserved confounders -- the unobserved variables that affect both the treatments and the outcome. Recent studies have shown that by modeling how instances are assigned with different treatments together, the patterns of unobserved confounders can be captured through their learned latent representations. However, the interpretability of the representations in these works is limited. In this paper, we focus on the multi-cause effect estimation problem from a new perspective by learning disentangled representations of confounders. The disentangled representations not only facilitate the treatment effect estimation but also strengthen the understanding of causality learning process. Experimental results on both synthetic and real-world datasets show the superiority of our proposed framework from different aspects. 
    more » « less
  3. Modeling distributions of covariates, or density estimation, is a core challenge in unsupervised learning. However, the majority of work only considers the joint distribution, which has limited utility in practical situations. A more general and useful problem is arbitrary conditional density estimation, which aims to model any possible conditional distribution over a set of covariates, reflecting the more realistic setting of inference based on prior knowledge. We propose a novel method, Arbitrary Conditioning with Energy (ACE), that can simultaneously estimate the distribution p(x_u | x_o) for all possible subsets of unobserved features x_u and observed features x_o. ACE is designed to avoid unnecessary bias and complexity — we specify densities with a highly expressive energy function and reduce the problem to only learning one-dimensional conditionals (from which more complex distributions can be recovered during inference). This results in an approach that is both simpler and higher-performing than prior methods. We show that ACE achieves state-of-the-art for arbitrary conditional likelihood estimation and data imputation on standard benchmarks. 
    more » « less
  4. Because the average treatment effect (ATE) measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population. Assessing such risk is difficult, however, because any one individual treatment effect (ITE) is never observed, so the 10% worst-affected cannot be identified, whereas distributional treatment effects only compare the first deciles within each treatment group, which does not correspond to any 10% subpopulation. In this paper, we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution. We leverage the availability of pretreatment covariates and characterize the tightest possible upper and lower bounds on ITE-CVaR given by the covariate-conditional average treatment effect (CATE) function. We then proceed to study how to estimate these bounds efficiently from data and construct confidence intervals. This is challenging even in randomized experiments as it requires understanding the distribution of the unknown CATE function, which can be very complex if we use rich covariates to best control for heterogeneity. We develop a debiasing method that overcomes this and prove it enjoys favorable statistical properties even when CATE and other nuisances are estimated by black box machine learning or even inconsistently. Studying a hypothetical change to French job search counseling services, our bounds and inference demonstrate a small social benefit entails a negative impact on a substantial subpopulation. This paper was accepted by J. George Shanthikumar, data science. Funding: This work was supported by the Division of Information and Intelligent Systems [Grant 1939704]. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2023.4819 . 
    more » « less
  5. Matching is one of the simplest approaches for estimating causal effects from observational data. Matching techniques compare the observed outcomes across pairs of individuals with similar covariate values but different treatment statuses in order to estimate causal effects. However, traditional matching techniques are unreliable given high-dimensional covariates due to the infamous curse of dimensionality. To overcome this challenge, we propose a simple, fast, yet highly effective approach to matching using Random Hyperplane Tessellations (RHPT). First, we prove that the RHPT representation is an approximate balancing score – thus maintaining the strong ignorability assumption – and provide empirical evidence for this claim. Second, we report results of extensive experiments showing that matching using RHPT outperforms traditional matching techniques and is competitive with state-of-the-art deep learning methods for causal effect estimation. In addition, RHPT avoids the need for computationally expensive training of deep neural networks. 
    more » « less