skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arbitrary Conditional Distributions with Energy
Modeling distributions of covariates, or density estimation, is a core challenge in unsupervised learning. However, the majority of work only considers the joint distribution, which has limited utility in practical situations. A more general and useful problem is arbitrary conditional density estimation, which aims to model any possible conditional distribution over a set of covariates, reflecting the more realistic setting of inference based on prior knowledge. We propose a novel method, Arbitrary Conditioning with Energy (ACE), that can simultaneously estimate the distribution p(x_u | x_o) for all possible subsets of unobserved features x_u and observed features x_o. ACE is designed to avoid unnecessary bias and complexity — we specify densities with a highly expressive energy function and reduce the problem to only learning one-dimensional conditionals (from which more complex distributions can be recovered during inference). This results in an approach that is both simpler and higher-performing than prior methods. We show that ACE achieves state-of-the-art for arbitrary conditional likelihood estimation and data imputation on standard benchmarks.  more » « less
Award ID(s):
2133595
PAR ID:
10338262
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
34
ISSN:
1049-5258
Page Range / eLocation ID:
752--763
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper studies the fundamental problem of learning multi-layer generator models. The multi-layer generator model builds multiple layers of latent variables as a prior model on top of the generator, which benefits learning complex data distribution and hierarchical representations. However, such a prior model usually focuses on modeling inter-layer relations between latent variables by assuming non-informative (conditional) Gaussian distributions, which can be limited in model expressivity. To tackle this issue and learn more expressive prior models, we propose an energy-based model (EBM) on the joint latent space over all layers of latent variables with the multi-layer generator as its backbone. Such joint latent space EBM prior model captures the intra-layer contextual relations at each layer through layer-wise energy terms, and latent variables across different layers are jointly corrected. We develop a joint training scheme via maximum likelihood estimation (MLE), which involves Markov Chain Monte Carlo (MCMC) sampling for both prior and posterior distributions of the latent variables from different layers. To ensure efficient inference and learning, we further propose a variational training scheme where an inference model is used to amortize the costly posterior MCMC sampling. Our experiments demonstrate that the learned model can be expressive in generating high-quality images and capturing hierarchical features for better outlier detection. 
    more » « less
  2. Summary Conditional density estimation seeks to model the distribution of a response variable conditional on covariates. We propose a Bayesian partition model using logistic Gaussian processes to perform conditional density estimation. The partition takes the form of a Voronoi tessellation and is learned from the data using a reversible jump Markov chain Monte Carlo algorithm. The methodology models data in which the density changes sharply throughout the covariate space, and can be used to determine where important changes in the density occur. The Markov chain Monte Carlo algorithm involves a Laplace approximation on the latent variables of the logistic Gaussian process model which marginalizes the parameters in each partition element, allowing an efficient search of the approximate posterior distribution of the tessellation. The method is consistent when the density is piecewise constant in the covariate space or when the density is Lipschitz continuous with respect to the covariates. In simulation and application to wind turbine data, the model successfully estimates the partition structure and conditional distribution. 
    more » « less
  3. Given historical traffic distributions and associated urban conditions observed in a city, the conditional urban traffic estimation problem aims at estimating realistic future projections of the traffic under a set of new urban conditions, e.g., new bus routes, rainfall intensity, and travel demands. The problem is important in reducing traffic congestion, improving public transportation efficiency, and facilitating urban planning. However, solving this problem is challenging due to the strong spatial dependencies of traffic patterns and the complex relations between the traffic and urban conditions. Recently, we proposed a Complex-Condition-Controlled Generative Adversarial Network C3-GAN, which tackles both of the challenges and solves the urban traffic estimation problem under various complex conditions by adding a fixed embedding network and an inference network on top of the standard conditional GAN model. The randomly chosen embedding network transforms the complex conditions to latent vectors, and the inference network enhances the connections between the embedded vectors and the traffic data. However, a randomly chosen embedding network cannot always successfully extract features of complex urban conditions, which indicates C3-GAN is unable to uniquely map different urban conditions to proper latent distributions. Thus, C3-GAN would fail in certain traffic estimation tasks. Besides, C3-GAN is hard to train due to vanishing gradients and mode collapse problems. To address these issues, in this article, we extend our prior work by introducing a new deep generative model, namely, C3-GAN+, which significantly improves the estimation performance and model stability. C3-GAN+ has new objective, architecture, and training algorithm. The new objective applies Wasserstein loss to the conditional generation case to encourage stable training. Shared convolutional layers between the discriminator and the inference network help to capture spatial dependencies of traffic more efficiently, part of the shared convolutional layers are used to update the embedding network periodically aiming to encourage good representation and avoid model divergence. Extensive experiments on real-world datasets demonstrate that our C3-GAN+ produces high-quality traffic estimations and outperforms state-of-the-art baseline methods. 
    more » « less
  4. Abstract The problem of modeling the relationship between univariate distributions and one or more explanatory variables lately has found increasing interest. Existing approaches proceed by substituting proxy estimated distributions for the typically unknown response distributions. These estimates are obtained from available data but are problematic when for some of the distributions only few data are available. Such situations are common in practice and cannot be addressed with currently available approaches, especially when one aims at density estimates. We show how this and other problems associated with density estimation such as tuning parameter selection and bias issues can be side-stepped when covariates are available. We also introduce a novel version of distribution-response regression that is based on empirical measures. By avoiding the preprocessing step of recovering complete individual response distributions, the proposed approach is applicable when the sample size available for each distribution varies and especially when it is small for some of the distributions but large for others. In this case, one can still obtain consistent distribution estimates even for distributions with only few data by gaining strength across the entire sample of distributions, while traditional approaches where distributions or densities are estimated individually fail, since sparsely sampled densities cannot be consistently estimated. The proposed model is demonstrated to outperform existing approaches through simulations and Environmental Influences on Child Health Outcomes data. 
    more » « less
  5. The majority of state-of-the-art deep learning methods are discriminative approaches, which model the conditional distribution of labels given inputs features. The success of such approaches heavily depends on high-quality labeled instances, which are not easy to obtain, especially as the number of candidate classes increases. In this paper, we study the complementary learning problem. Unlike ordinary labels, complementary labels are easy to obtain because an annotator only needs to provide a yes/no answer to a randomly chosen candidate class for each instance. We propose a generative-discriminative complementary learning method that estimates the ordinary labels by modeling both the conditional (discriminative) and instance (generative) distributions. Our method, we call Complementary Conditional GAN (CCGAN), improves the accuracy of predicting ordinary labels and is able to generate high-quality instances in spite of weak supervision. In addition to the extensive empirical studies, we also theoretically show that our model can retrieve the true conditional distribution from the complementarily-labeled data. 
    more » « less