skip to main content


Title: Subtropical South American Hailstorm Characteristics and Environments
Abstract

Hailstorms in subtropical South America are known to be some of the most frequent anywhere in the world, causing significant damage to the local agricultural economy every year. Convection in this region tends to be orographically forced, with moisture supplied from the Amazon rain forest by the South American low-level jet. Previous climatologies of hailstorms in this region have been limited to localized and sparse observational networks. Because of the lack of sufficient ground-based radar coverage, objective radar-derived hail climatologies have also not been produced for this region. As a result, this study uses a 16-yr dataset of TRMM Precipitation Radar and Microwave Imager observations to identify possible hailstorms remotely, using 37-GHz brightness temperature as a hail proxy. By combining satellite instruments and ERA-Interim reanalysis data, this study produces the first objective study of hailstorms in this region. Hailstorms in subtropical South America have an extended diurnal cycle, often occurring in the overnight hours. In addition, they tend to be multicellular in nature, rather than discrete. High-probability hailstorms (≥50% probability of containing hail) tend to be deeper by 1–2 km and horizontally larger by greater than 15 000 km2 than storms having a low probability of containing hail (<25% probability of containing hail). Hailstorms are supported synoptically by strong upper- and lower-level jets, anomalously warm and moist low levels, and enhanced instability. The findings of this study will support the forecasting of these severe storms and mitigation of their damage within this region.

 
more » « less
Award ID(s):
1661657
NSF-PAR ID:
10123355
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
147
Issue:
12
ISSN:
0027-0644
Page Range / eLocation ID:
p. 4289-4304
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Global satellite studies show a maximum in deep convection and lightning downstream of the Andes in subtropical South America. The Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign was designed to investigate the physical processes that contribute to the rapid development of deep convection and mesoscale convective systems (MCSs) in Argentina. A lightning mapping array (LMA) was deployed to Argentina as part of RELAMPAGO to collect lightning observations from extreme storms in the region. This study combines lightning data from the LMA and the Geostationary Lightning Mapper onboardGOES‐16with 1‐km gridded radar data to examine the electrical characteristics of a variety of convective storms throughout their life cycle observed during RELAMPAGO. Results from the full campaign show 48% of flashes are associated with deep convection that occurs along the eastern edge of the Sierras de Córdoba (SDC) overnight. These flashes are 65 km2smaller on average compared to stratiform flashes, which occur most frequently 50–100 km east of the SDC in the early morning hours, consistent with the upscale growth of MCSs off the terrain. Analysis of the 13–14 December MCS shows that sharp increases in flash rates correspond to deep and wide convective cores that have high graupel and hail mass, 35‐dBZ volume, and ice water path. This work validates previous satellite studies of lightning in the region, but also provides higher spatial and temporal resolution information across the convective life cycle that has not been available in previous studies.

     
    more » « less
  2. El Niño–Southern Oscillation (ENSO) is known to have teleconnections to atmospheric circulations and weather patterns around the world. Previous studies have examined connections between ENSO and rainfall in tropical South America, but little work has been done connecting ENSO phases with convection in subtropical South America. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) has provided novel observations of convection in this region, including that convection in the lee of the Andes Mountains is among the deepest and most intense in the world with frequent upscale growth into mesoscale convective systems. A 16-yr dataset from the TRMM PR is used to analyze deep and wide convection in combination with ERA-Interim reanalysis storm composites. Results from the study show that deep and wide convection occurs in all phases of ENSO, with only some modest variations in frequency between ENSO phases. However, the most statistically significant differences between ENSO phases occur in the three-dimensional storm structure. Deep and wide convection during El Niño tends to be taller and contain stronger convection, while La Niña storms contain stronger stratiform echoes. The synoptic and thermodynamic conditions supporting the deeper storms during El Niño is related to increased convective available potential energy, a strengthening of the South American low-level jet (SALLJ), and a stronger upper-level jet stream, often with the equatorward-entrance region of the jet stream directly over the convective storm locations. These enhanced synoptic and thermodynamic conditions provide insight into how the structure of some of the most intense convection on Earth varies with phases of ENSO.

     
    more » « less
  3. El Niño–Southern Oscillation (ENSO) is known to have teleconnections to atmospheric circulations and weather patterns around the world. Previous studies have examined connections between ENSO and rainfall in tropical South America, but little work has been done connecting ENSO phases with convection in subtropical South America. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) has provided novel observations of convection in this region, including that convection in the lee of the Andes Mountains is among the deepest and most intense in the world with frequent upscale growth into mesoscale convective systems. A 16-yr dataset from the TRMM PR is used to analyze deep and wide convection in combination with ERA-Interim reanalysis storm composites. Results from the study show that deep and wide convection occurs in all phases of ENSO, with only some modest variations in frequency between ENSO phases. However, the most statistically significant differences between ENSO phases occur in the three-dimensional storm structure. Deep and wide convection during El Niño tends to be taller and contain stronger convection, while La Niña storms contain stronger stratiform echoes. The synoptic and thermodynamic conditions supporting the deeper storms during El Niño is related to increased convective available potential energy, a strengthening of the South American low-level jet (SALLJ), and a stronger upper-level jet stream, often with the equatorward-entrance region of the jet stream directly over the convective storm locations. These enhanced synoptic and thermodynamic conditions provide insight into how the structure of some of the most intense convection on Earth varies with phases of ENSO. 
    more » « less
  4. null (Ed.)
    Abstract Storms that produce gargantuan hail (defined here as ≥ 6 inches or 15 cm in maximum dimension), although seemingly rare, can cause extensive damage to property and infrastructure, and cause injury or even death to humans and animals. Currently, we are limited in our ability to accurately predict gargantuan hail and detect gargantuan hail on radar. In this study, we analyze the environments and radar characteristics of gargantuan hail-producing storms to define the parameter space of environments in which gargantuan hail occurs, and compare environmental parameters and radar signatures in these storms to storms producing other sizes of hail. We find that traditionally used environmental parameters used for severe storms prediction, such as most unstable convective available potential energy (MUCAPE) and 0–6 km vertical wind shear, display considerable overlap between gargantuan hail-producing storm environments and those that produce smaller hail. There is a slight tendency for larger MUCAPE values for gargantuan hail cases, however. Additionally, gargantuan hail-producing storms seem to have larger low-level storm-relative winds and larger updraft widths than those storms producing smaller hail, implying updrafts less diluted by entrainment and perhaps maximizing the liquid water content available for hail growth. Moreover, radar reflectivity or products derived from it are not different from cases of smaller hail sizes. However, inferred mesocyclonic rotational velocities within the hail growth region of storms that produce gargantuan hail are significantly stronger than the rotational velocities found for smaller hail categories. 
    more » « less
  5. null (Ed.)
    Abstract During the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations-Cloud, Aerosol, and Complex Terrain Interactions (RELAMPAGO-CACTI) field experiments in 2018–19, an unprecedented number of balloon-borne soundings were collected in Argentina. Radiosondes were launched from both fixed and mobile platforms, yielding 2712 soundings during the period 15 October 2018–30 April 2019. Approximately 20% of these soundings were collected by highly mobile platforms, strategically positioned for each intensive observing period, and launching approximately once per hour. The combination of fixed and mobile soundings capture both the overall conditions characterizing the RELAMPAGO-CACTI campaign, as well as the detailed evolution of environments supporting the initiation and upscale growth of deep convective storms, including some that produced hazardous hail and heavy rainfall. Episodes of frequent convection were characterized by sufficient quantities of moisture and instability for deep convection, along with deep-layer vertical wind shear supportive of organized or rotating storms. A total of 11 soundings showed most unstable convective available potential energy (MUCAPE) exceeding 6000 J kg −1 , comparable to the extreme instability observed in other parts of the world with intense deep convection. Parameters used to diagnose severe-storm potential showed that conditions were often favorable for supercells and severe hail, but not for tornadoes, primarily because of insufficient low-level wind shear. High-frequency soundings also revealed the structure and evolution of the boundary layer leading up to convection initiation, convectively generated cold pools, the South American low-level jet (SALLJ), and elevated nocturnal convection. This sounding dataset will enable improved understanding and prediction of convective storms and their surroundings in subtropical South America, as well as comparisons with other heavily studied regions such as the central United States that have not previously been possible. 
    more » « less